Correction of Zero-Drift of Differential Pressure Flow Meters of ACME Facility

Author(s):  
Mingtao Cui ◽  
Tao Zhang

ACME facility (Advanced Core-cooling Mechanism Experiment) is a large-scale test facility used to validate the performance of passive core-cooling system under SBLOCA (Small Break Lost of Coolant Accident) for the CAP1400, an upgraded passive safety nuclear power plant of AP1000. To simulate the features of passive safety system properly, DELTABAR, a kind of differential pressure flow meter, is designed to measure different mass flow of ACME. Because of the low pressure loss of DELTABAR, Zero-Drift problem of differential pressure flow meters in ACME is amplified, and some of the measured values are distorted seriously. To minimize the influence of Zero-Drift, analysis on zero-drift phenomenon is made, and a compensation method is proposed. The method is applying to PBL flow meters, and the result shows that the method is applicable.

Author(s):  
Zhanfei Qi ◽  
Sheng Zhu

CAP1400 Pressurized Water Reactor is developed by China’s State Nuclear Power Technology Corporation (SNPTC) based on the passive safety concept and advanced system design. The Advanced Core-cooling Mechanism Experiment (ACME) integral effect test facility, which was constructed at Tsinghua University, represents a 1/3-scale height of CAP1400 RCS and passive safety features. It is designed to simulate the performance of CAP1400 passive core cooling system in the small break loss of coolant accidents (SBLOCA) for design certification, safety review and safety analysis code development. The Long Term Core Cooling (LTCC) post-LOCA could be simulated by ACME as well. A series of test cases with various break sizes and locations with post-LOCA LTCC period were conducted in ACME facility. This paper describes the post-LOCA LTCC test conducted in ACME test facility. The LTCC phenomena in different cases are very similar. It’s found that the interval that switching from IRWST injection to sump recirculation has the least safety margin. However, it’s shown that the post-LOCA LTCC in ACME could be well maintained by passive core cooling system according to the test results even though the recirculation water level in ACME IRWST-2 is lower than the containment recircualtion level in CAP1400 conservatively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Peng Chuanxin ◽  
Zhuo Wenbin ◽  
Chen Bingde ◽  
Nie Changhua ◽  
Huang Yanping

Low pressure reactor is a small size advanced reactor with power of 180 MWt, which is under development at Nuclear Power Institute of China. In order to assess the ability and feasibility of passive safety system, several tests have been implemented on the passive safety system (PSS) test facility. During the LOCA and SBO accident, the adequate core cooling is provided by the performance of passive safety system. In addition the best-estimate thermal hydraulic code, CATHARE V2.1, has been assessed against cold leg LOCA test. The calculation results show that CATHARE is in a satisfactory agreement with the test for the steady state and transient test.


Author(s):  
Sheng Zhu

CAP1400 is a large pressurized water reactor based on the passive safety conception. An ACME (Advanced Core-cooling Mechanism Experiment) facility has been designed and constructed in order to validate that the CAP1400 system design is acceptable to mitigate the loss of coolant accident (LOCA). The ACME test facility is an isotonic pressure, 1/3-scale height and 1/54.32-scale power simulation of the prototype CAP1400 nuclear power plant. It contains the main-loop system, passive safety system, secondary steam system and auxiliary system etc. The all of ACME test matrix including 5 kinds 21 cases .In this paper, the test results and the Realp5 prediction of the cold leg 5cm break accident of CAP1400 are compared and analyzed to briefly evaluate the ACME capability. Furthermore, 3 different types of 5cm cold leg break test cases are presented, and the transient process, system responses and key parameters tendency are analyzed based on the test. The results indicate that the passive safety system design can successfully combine to provide a continuous removal of core decay heat and the reactor core remains to be covered with considerable margin for the 3 different 5cm cold leg break accidents.


Author(s):  
Wei Li ◽  
Shuhong Du ◽  
Weiquan Gu ◽  
Nan Zhang ◽  
Ming Ding ◽  
...  

Abstract HPR1000 is an advanced nuclear power plant with the significant feature of an active and passive safety design philosophy, developed by the China National Nuclear Corporation. It is based on the large accumulated knowledge from the design, construction as well as operations experience of nuclear power plants in China. The passive containment cooling system (PCS) of HPR1000 is an important and innovative passive safety system to suppress the pressure in the containment during LOCA. In this paper, the detailed design process of PCS is reviewed, and an integrated experiment facility for the study on the coupling behavior between PCS and thermal hydraulic characteristics in the containment is described, and arrangement of measuring points including temperature, pressure, gas composition and so on are introduced in detailed. Also, the experimental energy released and energy vent to ensure the similarity of containment pressure response, thermal stratification and PCS heat removal is introduced. According to this versatile experiment facility can conduct real-engineering system test which is designed to support the PCS development. In addition, this valuable experience in the design and manufacture of integrated experiment facility can provide important technical support and guidance for the China next generation advanced PWR as well as safety related system.


Author(s):  
Arcadii E. Kisselev ◽  
Valerii F. Strizhov ◽  
Alexander D. Vasiliev ◽  
Vladimir I. Nalivayev ◽  
Nikolay Ya. Parshin

The PARAMETER-SF3 test conditions simulated a severe LOCA (Loss of Coolant Accident) nuclear power plant sequence in which the overheated up to 1700÷2300K core would be reflooded from the top and the bottom in occasion of ECCS (Emergency Core Cooling System) recovery. The test was successfully conducted at the NPO “LUTCH”, Podolsk, Russia, in October 31, 2008, and was the third of four experiments of series PARAMETER-SF. PARAMETER facility of NPO “LUTCH”, Podolsk, is designed for studies of the VVER fuel assemblies behavior under conditions simulating design basis, beyond design basis and severe accidents. The test bundle was made up of 19 fuel rod simulators with a length of approximately 3.12 m (heated rod simulators) and 2.92 m (unheated rod simulator). Heating was carried out electrically using 4-mm-diameter tantalum heating elements installed in the center of the rods and surrounded by annular UO2 pellets. The rod cladding was identical to that used in VVERs: Zr1%Nb, 9.13 mm outside diameter, 0.7 mm wall thickness. After the maximum cladding temperature of about 1900K was reached in the bundle during PARAMETER-SF3 test, the top flooding was initiated. The thermal hydraulic and SFD (Severe Fuel Damage) best estimate numerical complex SOCRAT/V2 was used for the calculation of PARAMETER-SF3 experiment. The counter-current flow limitation (CCFL) model was implemented to best estimate numerical code SOCRAT/V2 developed for modeling thermal hydraulics and severe accident phenomena in a reactor. Thermal hydraulics in PARAMETER-SF3 experiment played very important role and its adequate modeling is important for the thermal analysis. The results obtained by the complex SOCRAT/V2 were compared with experimental data concerning different aspects of thermal hydraulics behavior including the CCFL phenomenon during the reflood. The temperature experimental data were found to be in a good agreement with calculated results. It is indicative of the adequacy of modeling the complicated thermo-hydraulic behavior in the PARAMETER-SF3 test.


2015 ◽  
Vol 90 ◽  
pp. 609-618 ◽  
Author(s):  
Yeong Shin Jeong ◽  
Kyung Mo Kim ◽  
In Guk Kim ◽  
In Cheol Bang

Author(s):  
Guohua Yan ◽  
Chen Ye

In the entire history of commercial nuclear power so far, only two major accidents leading to damage of reactor core have taken place. One is Three Mile Island (TMT) accident (1979), which is caused by a series of human error, and the other is Chernobyl accident (1986), which is due to the combined reason of design defects and human errors. After TMI and Chernobyl accidents, in order to reduce manpower in operation and maintenance and influence of human errors on reactor safety, consideration is given to utilization of passive safety systems. According to the IAEA definition, passive safety systems are based on natural forces, such as convection and gravity, and stored energy, making safety functions less dependent on active systems and operators’ action. Recently, the technology of passive safety has been adopted in many reactor designs, such as AP1000, developed by Westinghouse and EP1000 developed by European vendor, and so on. AP1000 as the first so-called Generation III+ has received the final design approval from US NRC in September 2004, and now being under construction in Sanmen, China. In this paper, the major passive safety systems of AP1000, including passive safety injection system, automatic depressurization system passive residual heat removal system and passive containment cooling system, are described and their responses to a break loss-of-coolant accident (LOCA) are given. Just due to these passive systems’ adoption, the nuclear plant can be able to require no operator action and offsite or onsite AC power sources for at least 72h when one accident occurs, and the core melt and large release frequencies are significantly below the requirement of operating plants and the NRC safety goals.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Lorenzo Tarchi ◽  
Nils Ohlendorf

An experimental survey of a leading edge cooling scheme was performed to measure the Nusselt number distribution on a large scale test facility simulating the leading edge cavity of an high pressure turbine blade. Test section is composed by two adjacent cavities, a rectangular supply channel and the leading edge cavity. The cooling flow impinges on the concave leading edge internal walls, by means of an impingement array located between the two cavities, and it is extracted through showerhead and film cooling holes. The impingement geometry is composed by a double array of circular or shaped holes. The aim of the present study is to investigate the heat transfer performance of two optimized impingement schemes in comparison with a standard one with circular and orthogonal holes. Both the optimized arrays have inclined racetrack shaped holes and one of them has also a converging shape. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number was varied in order to cover the typical engine conditions of these cooling systems (Rej = 15000–45000). Results are reported in terms of detailed 2D maps, radial and tangential averaged Nusselt numbers.


Author(s):  
T. Gocht ◽  
W. Kästner ◽  
A. Kratzsch ◽  
M. Strasser

In case of an accident the safe heat removal from the reactor core with the installed emergency core cooling system (ECCS) is one of the main features in reactor safety. During a loss-of-coolant accident (LOCA) the release of insulation material fragments in the reactor containment can lead to malfunctions of ECCS. Therefore, the retention of particles by strainers or filtering systems in the ECCS is one of the major tasks. The aim of the presented experimental investigations was the evaluation of a filtering system for the retention of fiber-shaped particles in a fluid flow. The filtering system consists of a filter case with a special lamellar filter unit. The tests were carried out at a test facility with filtering units of different mesh sizes. Insulation material (mineral rock wool) was fragmented to fiber-shaped particles. To simulate the distribution of particle concentration at real plants with large volumes the material was divided into single portions and introduced into the loop with a defined time interval. Material was transported to the filter by the fluid and agglomerated there. The assessment of functionality of the filtering system was made by differential pressure between inlet and outlet of the filtering system and by mass of penetrated particles. It can be concluded that for the tested filtering system no penetration of insulation particles occurred.


Author(s):  
Alexander D. Vasiliev

The PARAMETER-SF3 test conditions simulated a severe LOCA (Loss of Coolant Accident) nuclear power plant sequence in which the overheated up to 1700–2300K core would be reflooded from the top and the bottom in occasion of ECCS (Emergency Core Cooling System) recovery. The test was successfully conducted at the NPO “LUTCH”, Podolsk, Russia, in October 31, 2008, and was the third of four experiments of series PARAMETER-SF. PARAMETER facility of NPO “LUTCH”, Podolsk, is designed for studies of the VVER fuel assemblies behavior under conditions simulating design basis, beyond design basis and severe accidents. The test bundle was made up of 19 fuel rod simulators with a length of approximately 3.12 m (heated rod simulators) and 2.92 m (unheated rod simulator). Heating was carried out electrically using 4-mm-diameter tantalum heating elements installed in the center of the rods and surrounded by annular UO2 pellets. The rod cladding was identical to that used in VVERs: Zr1%Nb, 9.13 mm outside diameter, 0.7 mm wall thickness. After the maximum cladding temperature of about 1900K was reached in the bundle during PARAMETER-SF3 test, the top flooding was initiated. The thermal hydraulic and SFD (Severe Fuel Damage) best estimate numerical complex SOCRAT/V2 was used for the calculation of PARAMETER-SF3 experiment. The counter-current flow limitation (CCFL) model was implemented to best estimate numerical code SOCRAT/V2 developed for modeling thermal hydraulics and severe accident phenomena in a reactor. Thermal hydraulics in PARAMETER-SF3 experiment played very important role and its adequate modeling is important for the thermal analysis. The results obtained by the complex SOCRAT/V2 were compared with experimental data concerning different aspects of thermal hydraulics behavior including the CCFL phenomenon during the reflood. The temperature experimental data were found to be in a good agreement with calculated results. It is indicative of the adequacy of modeling the complicated thermo-hydraulic behavior in the PARAMETER-SF3 test.


Sign in / Sign up

Export Citation Format

Share Document