scholarly journals PERBANDINGAN METODE SEASONAL ARIMA DAN EXTREME LEARNING MACHINE PADA PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI

2021 ◽  
Vol 15 (4) ◽  
pp. 639-650
Author(s):  
Bayu Galih Prianda ◽  
Edy Widodo

Bali Island of the Gods is one of the wealth of very popular tourist destinations and has the highest number of foreign tourists in Indonesia. It is very necessary to do more in-depth learning related to the projections or forecasting of foreign tourist visits to Bali at a certain period of time. Forecasting analysis used is to compare two methods, namely the Seasonal ARIMA method (SARIMA) and Extreme Learning Machine (ELM). The SARIMA method is a statistical method commonly used in forecasting time series data that contains seasonality and has good accuracy. While the ELM method is a new learning method of artificial neural networks that has fast learning speed and good accuracy. The results obtained indicate that the Seasonal ARIMA method is a better method used to predict the number of tourists to Bali in this case, because it has a smaller forecasting MAPE value of 4.97%. While the ELM method has a forecasting MAPE value of 7.62%.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Pengbo Zhang ◽  
Zhixin Yang

Extreme learning machine (ELM) has been well recognized as an effective learning algorithm with extremely fast learning speed and high generalization performance. However, to deal with the regression applications involving big data, the stability and accuracy of ELM shall be further enhanced. In this paper, a new hybrid machine learning method called robust AdaBoost.RT based ensemble ELM (RAE-ELM) for regression problems is proposed, which combined ELM with the novel robust AdaBoost.RT algorithm to achieve better approximation accuracy than using only single ELM network. The robust threshold for each weak learner will be adaptive according to the weak learner’s performance on the corresponding problem dataset. Therefore, RAE-ELM could output the final hypotheses in optimally weighted ensemble of weak learners. On the other hand, ELM is a quick learner with high regression performance, which makes it a good candidate of “weak” learners. We prove that the empirical error of the RAE-ELM is within a significantly superior bound. The experimental verification has shown that the proposed RAE-ELM outperforms other state-of-the-art algorithms on many real-world regression problems.


Author(s):  
JUNHAI ZHAI ◽  
HONGYU XU ◽  
YAN LI

Extreme learning machine (ELM) is an efficient and practical learning algorithm used for training single hidden layer feed-forward neural networks (SLFNs). ELM can provide good generalization performance at extremely fast learning speed. However, ELM suffers from instability and over-fitting, especially on relatively large datasets. Based on probabilistic SLFNs, an approach of fusion of extreme learning machine (F-ELM) with fuzzy integral is proposed in this paper. The proposed algorithm consists of three stages. Firstly, the bootstrap technique is employed to generate several subsets of original dataset. Secondly, probabilistic SLFNs are trained with ELM algorithm on each subset. Finally, the trained probabilistic SLFNs are fused with fuzzy integral. The experimental results show that the proposed approach can alleviate to some extent the problems mentioned above, and can increase the prediction accuracy.


2018 ◽  
Vol 246 ◽  
pp. 03018
Author(s):  
Zuozhi Liu ◽  
JinJian Wu ◽  
Jianpeng Wang

Extreme learning machine (ELM) is a new novel learning algorithm for generalized single-hidden layer feedforward networks (SLFNs). Although it shows fast learning speed in many areas, there is still room for improvement in computational cost. To address this issue, this paper proposes an improved ELM (FRCFELM) which employs the full rank Cholesky factorization to compute output weights instead of traditional SVD. In addition, this paper proves in theory that the proposed FRCF-ELM has lower computational complexity. Experimental results over some benchmark applications indicate that the proposed FRCF-ELM learns faster than original ELM algorithm while preserving good generalization performance.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 609 ◽  
Author(s):  
Fan Zhang ◽  
Jiabin Liu ◽  
Bo Wang ◽  
Zhiquan Qi ◽  
Yong Shi

Learning from label proportions (LLP) is a new kind of learning problem which has attracted wide interest in machine learning. Different from the well-known supervised learning, the training data of LLP is in the form of bags and only the proportion of each class in each bag is available. Actually, many modern applications can be successfully abstracted to this problem such as modeling voting behaviors and spam filtering. However, time-consuming training is still a challenge for LLP, which becomes a bottleneck especially when addressing large bags and bag sizes. In this paper, we propose a fast algorithm called multi-class learning from label proportions by extreme learning machine (LLP-ELM), which takes advantage of an extreme learning machine with fast learning speed to solve multi-class learning from label proportions. Firstly, we reshape the hidden layer output matrix and the training data target matrix of an extreme learning machine to adapt to the proportion information instead of the real labels. Secondly, a robust loss function with a regularization term is formulated and two efficient solutions are provided to different cases. Finally, various experiments demonstrate the significant speed-up of the proposed model with better accuracies on different datasets compared with several state-of-the-art methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yuqing Bian ◽  
Jianwei Yang ◽  
Ming Li ◽  
Rushi Lan

Extreme learning machine (ELM) is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs). Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression (LR) is a statistical method which is conceptually simple and algorithmically fast. In this paper, in order to improve the real-time performance, a flare forecasting method is introduced which is the combination of the LR model and the ELM algorithm. The predictive variables are three photospheric magnetic parameters, that is, the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The LR model is used to map these three magnetic parameters of each active region into four probabilities. Consequently, the ELM is used to map the four probabilities into a binary label which is the final output. The proposed model is used to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded. The experimental results show that the cascade algorithm not only improves learning speed to realize timely prediction but also has higher accuracy of X-class flare prediction in comparison with other methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Wentao Mao ◽  
Jinwan Wang ◽  
Liyun Wang ◽  
Mei Tian

Accurate and fast prediction of nonstationary time series is challenging and of great interest in both practical and academic areas. In this paper, an online sequential extreme learning machine with new weighted strategy is proposed for nonstationary time series prediction. First, a new leave-one-out (LOO) cross-validation error estimation for online sequential data is proposed based on inversion of block matrix. Second, a new weighted strategy based on the proposed LOO error estimation is proposed. This strategy ranks the samples’ importance by means of the LOO error of each new added sample and then assigns various weights. Performance comparisons of the proposed method with other existing algorithms are presented based on chaotic and real-world nonstationary time series data. The results show that the proposed method outperforms the classical ELM and OS-ELM in terms of generalization performance and numerical stability.


2018 ◽  
Vol 10 (25) ◽  
pp. 3011-3022 ◽  
Author(s):  
Peng Shan ◽  
Yuhui Zhao ◽  
Xiaopeng Sha ◽  
Qiaoyun Wang ◽  
Xiaoyong Lv ◽  
...  

As a nonlinear multivariate calibration method, extreme learning machine (ELM) has recently received increasing attention for its fast learning speed and excellent generalized performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yue Zhao ◽  
Ye Yuan ◽  
Guoren Wang

This paper describes a keyword search measure on probabilistic XML data based on ELM (extreme learning machine). We use this method to carry out keyword search on probabilistic XML data. A probabilistic XML document differs from a traditional XML document to realize keyword search in the consideration of possible world semantics. A probabilistic XML document can be seen as a set of nodes consisting of ordinary nodes and distributional nodes. ELM has good performance in text classification applications. As the typical semistructured data; the label of XML data possesses the function of definition itself. Label and context of the node can be seen as the text data of this node. ELM offers significant advantages such as fast learning speed, ease of implementation, and effective node classification. Set intersection can compute SLCA quickly in the node sets which is classified by using ELM. In this paper, we adopt ELM to classify nodes and compute probability. We propose two algorithms that are based on ELM and probability threshold to improve the overall performance. The experimental results verify the benefits of our methods according to various evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document