scholarly journals LMI-Based Stability Criterion for Impulsive CGNNs via Fixed Point Theory

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiongrui Wang ◽  
Ruofeng Rao ◽  
Shouming Zhong

Linear matrices inequalities (LMIs) method and the contraction mapping theorem were employed to prove the existence of globally exponentially stable trivial solution for impulsive Cohen-Grossberg neural networks (CGNNs). It is worth mentioning that it is the first time to use the contraction mapping theorem to prove the stability for CGNNs while only the Leray-Schauder fixed point theorem was applied in previous related literature. An example is given to illustrate the effectiveness of the proposed methods due to the large allowable variation range of impulse.

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Janusz Brzdęk ◽  
Liviu Cădariu ◽  
Krzysztof Ciepliński

The fixed point method has been applied for the first time, in proving the stability results for functional equations, by Baker (1991); he used a variant of Banach's fixed point theorem to obtain the stability of a functional equation in a single variable. However, most authors follow the approaches involving a theorem of Diaz and Margolis. The main aim of this survey is to present applications of different fixed point theorems to the theory of stability of functional equations, motivated by a problem raised by Ulam in 1940.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ruofeng Rao ◽  
Zhilin Pu

By formulating a contraction mapping and the matrix exponential function, the authors apply linear matrix inequality (LMI) technique to investigate and obtain the LMI-based stability criterion of a class of time-delay Takagi-Sugeno (T-S) fuzzy differential equations. To the best of our knowledge, it is the first time to obtain the LMI-based stability criterion derived by a fixed point theory. It is worth mentioning that LMI methods have high efficiency and other advantages in largescale engineering calculations. And the feasibility of LMI-based stability criterion can efficiently be computed and confirmed by computer Matlab LMI toolbox. At the end of this paper, a numerical example is presented to illustrate the effectiveness of the proposed methods.


2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2011 ◽  
Vol 61 (5) ◽  
Author(s):  
D. Miheţ ◽  
R. Saadati ◽  
S. Vaezpour

AbstractWe establish a stability result concerning the functional equation: $\sum\limits_{i = 1}^m {f\left( {mx_i + \sum\limits_{j = 1,j \ne i}^m {x_j } } \right) + f\left( {\sum\limits_{i = 1}^m {x_i } } \right) = 2f\left( {\sum\limits_{i = 1}^m {mx_i } } \right)} $ in a large class of complete probabilistic normed spaces, via fixed point theory.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ruofeng Rao ◽  
Shouming Zhong

This paper investigates the stochastically exponential stability of reaction-diffusion impulsive stochastic cellular neural networks (CNN). The reaction-diffusion pulse stochastic system model characterizes the complexity of practical engineering and brings about mathematical difficulties, too. However, the difficulties have been overcome by constructing a new contraction mapping and an appropriate distance on a product space which is guaranteed to be a complete space. This is the first time to employ the fixed point theorem to derive the stability criterion of reaction-diffusion impulsive stochastic CNN with distributed time delays. Finally, an example is provided to illustrate the effectiveness of the proposed methods.


2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Dorel Miheţ ◽  
Reza Saadati

AbstractRecently, the authors [MIHEŢ, D.—SAADATI, R.—VAEZPOUR, S. M.: The stability of an additive functional equation in Menger probabilistic φ-normed spaces, Math. Slovaca 61 (2011), 817–826] considered the stability of an additive functional in Menger φ-normed spaces. In this paper, we establish some stability results concerning the cubic, quadratic and quartic functional equations in complete Menger φ-normed spaces via fixed point theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Xianghong Lai ◽  
Yutian Zhang

We firstly employ the fixed point theory to study the stability of cellular neural networks without delays and with time-varying delays. Some novel and concise sufficient conditions are given to ensure the existence and uniqueness of solution and the asymptotic stability of trivial equilibrium at the same time. Moreover, these conditions are easily checked and do not require the differentiability of delays.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Gang Li ◽  
Yongqin Yang ◽  
Mao Ming Jin ◽  
Qinghua Zhang

By using ordered fixed point theory, we set up a new class of GNOVI structures (general nonlinear ordered variational inclusions) with(γG,λ)-weak-GRD mappings, discuss an existence theorem of solution, consider a perturbed Ishikawa iterative algorithm and the convergence of iterative sequences generated by the algorithm, and show the stability of algorithm for GNOVI structures in positive Hilbert spaces. The results in the instrument are obtained.


Sign in / Sign up

Export Citation Format

Share Document