scholarly journals Electronic Structure, Electronic Charge Density, and Optical Properties Analysis of GdX3 (X = In, Sn, Tl, and Pb) Compounds: DFT Calculations

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jisha Annie Abraham ◽  
Gitanjali Pagare ◽  
Sankar P. Sanyal

The electronic properties of magnetic cubic AuCu3 type GdX3 (X = In, Sn, Tl, and Pb) have been studied using first principles calculations based on density functional theory. Because of the presence of strong on-site Coulomb repulsion between the highly localized 4f electrons of Gd atoms, we have used LSDA + U approach to get accurate results in the present study. The electronic band structures as well as density of states reveal that the studied compounds show metallic behavior under ambient conditions. The calculated density of states at the Fermi level N(EF) shows good agreement with the available experimental results. The calculated electronic charge density plots show the presence of ionic bonding in all the compounds along with partial covalent bonding except in GdIn3. The complex optical dielectric function’s dispersion and the related optical properties such as refractive indices, reflectivity, and energy-loss function were calculated and discussed in detail.

2002 ◽  
Vol 16 (04) ◽  
pp. 571-581 ◽  
Author(s):  
D. BAGAYOKO ◽  
G. L. ZHAO

We performed ab-initio, local density functional calculations of the electronic structure, charge transfer, and optical properties of MgB2, using the LCAO formalism. The Fermi level of MgB 2 cuts through relatively narrow electron bands which have a dominant contribution from B (2p) states. There is a substantial charge transfer from magnesium to boron atoms. We found the ionic formula for this material to be [Formula: see text]. A clearly metallic distribution of the electronic charge density in the plane of boron atoms is interwoven with a visibly covalent one in the direction perpendicular to this plane. The calculated optical conductivities from the direct inter-band transitions exhibit a strong anisotropy between σxx(ω) or σyy(ω) and σzz(ω). Due to our application of the BZW procedure, major peaks in the density of states above the Fermi level are at markedly higher energies (1–1.5 eV) than the results of previously reported ones. A similar pattern is followed by our findings for optical conductivities.


Author(s):  
Khodja Djamila ◽  
Djaafri Tayeb ◽  
Djaafri Abdelkader ◽  
Bendjedid Aicha ◽  
Hamada Khelifa ◽  
...  

The investigations of the strain effects on magnetism, elasticity, electronic, optical and thermodynamic properties of PdVTe half-Heusler alloy are carried out using the most accurate methods to electronic band structure, i.e. the full-potential linearized augmented plane wave plus a local orbital (FP-LAPW + lo) approach. The analysis of the band structures and the density of states reveals the Half-metallic behavior with a small indirect band gap Eg of 0.51 eV around the Fermi level for the minority spin channels. The study of magnetic properties led to the predicted value of total magnetic moment µtot = 3µB, which nicely follows the Slater–Pauling rule µtot = Zt -18. Several optical properties are calculated for the first time and the predicted values are in line with the Penn model. It is shown from the imaginary part of the complex dielectric function that the investigated alloy is optically metallic. The variations of thermodynamic parameters calculated using the quasi-harmonic Debye model, accord well with the results predicted by the Debye theory. Moreover, the dynamical stability of the investigated alloy is computed by means of the phonon dispersion curves, the density of states, and the formation energies. Finally, the analysis of the strain effects reveals that PdVTe alloy preserves its ferromagnetic half metallic behavior, it remains mechanically stable, the ionic nature dominates the atomic bonding, and the thermodynamic and the optical properties keep the same features in a large interval of pressure.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850337
Author(s):  
Shahid Ullah ◽  
Hayat Ullah ◽  
Abdullah Yar ◽  
Sikander Azam ◽  
A. Laref

In this paper, we study the optoelectronic properties of quaternary metal chalcogenide semiconductor ABaMQ4 (A = Rb, Cs; M = P, V; and Q = S) compounds using state-of-the-art density functional theory (DFT) with TB-mBJ approximation for the treatment of exchange-correlation energy. In particular, the electronic and optical properties of the relaxed geometries of these compounds are investigated. Our first-principles ab-initio calculations show that the CsBaPS4 and RbBaPS4 compounds have direct bandgaps whereas the CsBaVS4 compound exhibits indirect bandgap nature. Importantly, the theoretically calculated values of the bandgaps of the compounds are consistent with experiment. Furthermore, our analysis of the electronic charge densities of these compounds indicates that the above quaternary chalcogenides have mixed covalent and ionic bonding characters. The effective masses of these compounds are also calculated which provide very useful information about the band structure and transport characteristics of the investigated compounds. Similarly, high absorptivity in the visible and ultraviolet regions of the electromagnetic spectrum possibly predicts and indicates the importance of these materials for potential optoelectronic applications in this range.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44960-44968 ◽  
Author(s):  
A. H. Reshak

Using the density functional theory plus Hubbard Hamiltonian we have investigated the spin up/down electronic band structure, density of states, electronic charge density distribution and the dispersion of the optical properties of microcrystalline β-RbNd(MoO4)2.


2019 ◽  
Vol 297 ◽  
pp. 131-142
Author(s):  
Hadjer Saheb ◽  
Abderrachid Bechiri

In the present study, we have computed the electronic band structure and electronic charge density of the alloy (Be, Cd)Se in the zinc-blende structure; using the local Empirical Pseudopotential Method (EPM), which takes into account the disorder effect into the Virtual Crystal Approximation (VCA) by introducing an effective potential disorder. The obtained results show a reasonable agreement with the available experimental data. Detailed plots of the valence charge distribution along the [111] direction and in the (110) plane are also presented and discussed.


2011 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
M. A. Ali ◽  
A. K. M. A. Islam ◽  
M. S. Ali

This article reports on the elastic, electronic and optical properties of predicted Ni-rich nitrides ANNi3 (A= Pt, Ag, Pd) in comparison with isostructural superconducting counterpart ZnNNi3. We have used first-principles density functional theory (DFT) with generalized gradient approximation (GGA). The independent elastic constants (C11, C12, and C44), bulk modulus B, compressibility K, shear modulus G, and Poisson’s ratio υ, as well as the band structures, total and partial densities of states and finally the optical properties of ANNi3 have been calculated. The results are then analyzed and compared with those of the superconducting ZnNNi3. The electronic band structures of the three compounds show metallic behavior with a high density of states at the Fermi level in which Ni 3d states dominate just like the superconducting ZnNNi3. Analysis of Tc expression using available  parameter values suggests that the three compounds are less likely to be superconductors. Optical reflectivity spectra indicate that all the compounds have the potential to be used as a coating to remove solar heating.Keywords: ANNi3; Ab initio calculations; Elastic properties; Electronic band structure; Optical properties.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i1.9026J. Sci. Res. 4 (1), 1-10 (2012)


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
C. Cab ◽  
R. Medina-Esquivel ◽  
C. Acosta ◽  
J. Mendez-Gamboa ◽  
F. Peñuñuri ◽  
...  

The influence of external electric field (EF) in the adsorption of atomic hydrogen on graphene (H/G) was studied by means of electronic structure calculations based on spin-polarized density functional theory with generalized gradient approximation (GGA). The changes in atomic hydrogen physisorption-chemisorption on graphene owed to EF (which ranged between −1.25 V/Å and 0.75 V/Å) were determined. Analysis of the electronic charge density for an H/G system explained the EF influences on the adsorption properties (analyzing changes in electronic charge density for H/G system). A decrease of more than 100% in the chemisorption barrier for an EF of −1.25 V/Å was found. The changes in the electronic charge density confirm the possibility of manipulating the physical-chemical adsorption of hydrogen on graphene by applying electric fields.


Author(s):  
Jalil Rehman ◽  
M.Awais Rehman ◽  
Muhammad Bilal Tahir ◽  
Muhammad Usman ◽  
Faisal Iqbal

This study addresses the first-principles analysis using generalized gradient approximation (GGA), which is pillared on density functional theory (DFT), to find the effects of silver (Ag) doping on SrTiO3 structurally, electronically and optical properties. As Ag doping into SrTiO3, we see a small decrease in the volume of unit cell. Moreover, Ag-doping adds new states in SrTiO3 at Brillouin zone symmetry points, transferring host material’s indirect band gap to a direct band gap. Ag doping in SrTiO3 results in the transfer density of states to smaller energies and increase in interaction among Ag atom and its surrounding atoms. Moreover, at the conduction band, the partial density of states (PDOS) of SrTiO3 changes generally. As a result, we conclude that Ag doping has an effect on the electronic band structure of SrTiO3. SrTiO3 doping with Ag has improved optical properties and its ability of converting to direct band gap results it in a perfect choice for optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document