scholarly journals CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Weixia Jing ◽  
Xuewu Zhang ◽  
Wenyan Sun ◽  
Xiujuan Hou ◽  
Zhongqiang Yao ◽  
...  

MicroRNA 155 (miR-155) is a key proinflammatory regulator in clinical and experimental rheumatoid arthritis (RA). Here we generated a miR-155 genome knockout (GKO) RAW264.7 macrophage cell line using the clustered regulatory interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CAS9) technology. While upregulating the Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1), the miR-155 GKO line is severely impaired in producing proinflammatory cytokines but slightly increased in osteoclastogenesis upon treatment with receptor activator of nuclear factor-κB ligand (RANKL). Taken together, our results suggest that genome editing of miR-155 holds the potential as a therapeutic strategy in RA.

1994 ◽  
Vol 14 (7) ◽  
pp. 4606-4615
Author(s):  
L B Areces ◽  
P Dello Sbarba ◽  
M Jücker ◽  
E R Stanley ◽  
R A Feldman

c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.


1994 ◽  
Vol 14 (7) ◽  
pp. 4606-4615 ◽  
Author(s):  
L B Areces ◽  
P Dello Sbarba ◽  
M Jücker ◽  
E R Stanley ◽  
R A Feldman

c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 879-885 ◽  
Author(s):  
Kazuhiko Maeda ◽  
Yoshihiro Baba ◽  
Yoshinori Nagai ◽  
Kozo Miyazaki ◽  
Alexander Malykhin ◽  
...  

Abstract Animals lacking Src homology 2 domain-containing inositol 5-phosphatase (SHIP) display a reduction in lymphopoiesis and a corresponding enhancement of myelopoiesis. These effects are mediated at least in part by elevated levels of interleukin 6 (IL-6). Here, we show the lymphopoiesis block in SHIP–/– mice is due to suppression of the lymphoid lineage choice by uncommitted progenitors. The suppression can be reproduced in vitro with recombinant IL-6, and IL-6 acts directly on hematopoietic progenitors. The block is partially overcome in SHIP–/– IL-6–/– double-deficient animals. IL-6 does not suppress but actually enhances proliferation of lymphoid-committed progenitors, indicating the IL-6 target cells are hematopoietic stem cells or multipotent progenitors. The findings suggest a mechanism for the lymphopenia that accompanies proinflammatory diseases.


2021 ◽  
Vol 16 (3) ◽  
pp. S217-S218
Author(s):  
M. Ito ◽  
J. Codony-Servat ◽  
A. Giménez-Capitán ◽  
M. Serra-Mitjans ◽  
F. Pérez-Ochoa ◽  
...  

EBioMedicine ◽  
2019 ◽  
Vol 39 ◽  
pp. 207-214 ◽  
Author(s):  
Niki Karachaliou ◽  
Andres Felipe Cardona ◽  
Jillian Wilhelmina Paulina Bracht ◽  
Erika Aldeguer ◽  
Ana Drozdowskyj ◽  
...  

1997 ◽  
Vol 272 (13) ◽  
pp. 8490-8497 ◽  
Author(s):  
Peter W. Janes ◽  
Martin Lackmann ◽  
W. Bret Church ◽  
Georgina M. Sanderson ◽  
Robert L. Sutherland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document