scholarly journals α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lorenzo Di Cesare Mannelli ◽  
Barbara Tenci ◽  
Matteo Zanardelli ◽  
Paola Failli ◽  
Carla Ghelardini

Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property ofα7 nicotinic-acetylcholine-receptor (nAChR) agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role ofα7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of theα7 nAChR agonist PNU-282987 (PNU). Oxaliplatin (1 μM, 48 h) reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase). On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. Theα7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism.α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Giuseppe Palma ◽  
Claudio Arra

Morphine, a highly potent analgesic agent, is widely used to relieve pain and suffering of patients with cancer. Additionally, it has been reported that morphine is important in the regulation of cancerous tissue. Morphine relieves pain by acting directly on the central nervous system, although its activities on peripheral tissues are responsible for many adverse side effects. For these reasons, it is very important also to understand the role of morphine in cancer treatment. The published literature reporting the effect of morphine on tumor growth presents some discrepancies, with reports suggesting that morphine may either promote or inhibit the tumor growth. It has been also demonstrated that morphine modulates angiogenesis which is important for primary tumour growth, invasiveness, and the development of metastasis. This review will focus on the latest findings on the role of morphine in the regulation of cancer cell growth and angiogenesis.


2019 ◽  
Vol 51 (6) ◽  
pp. 555-561 ◽  
Author(s):  
Anhui Wang ◽  
Changshui Xu

Abstract Neuropathic pain is caused by the damage or dysfunction of the nervous system. In many neuropathic pain models, there is an increase in the number of gap junction (GJ) channels, especially the upregulation of the expression of connexin43 (Cx43), leading to the secretion of various types of cytokines and involvement in the formation of neuropathic pain. GJs are widely distributed in mammalian organs and tissues, and Cx43 is the most abundant connexin (Cx) in mammals. Astrocytes are the most abundant glial cell type in the central nervous system (CNS), which mainly express Cx43. More importantly, GJs play an important role in regulating cell metabolism, signaling, and function. Many existing literatures showed that Cx43 plays an important role in the nervous system, especially in the CNS under normal and pathological conditions. However, many internal mechanisms have not yet been thoroughly explored. In this review, we summarized the current understanding of the role and association of Cx and pannexin channels in neuropathic pain, especially after spinal cord injury, as well as some of our own insights and thoughts which suggest that Cx43 may become an emerging therapeutic target for future neuropathic pain, bringing new hope to patients.


2017 ◽  
Vol 31 (1&2) ◽  
pp. 34 ◽  
Author(s):  
Jaime L. Schneider ◽  
Ann M. Miller ◽  
Mary E. Woesner

Autophagy, the process of degrading intracellular components in lysosomes, plays an important role in the central nervous system by contributing to neuronal homeostasis. Autophagic failure has been linked to neurologic dysfunction and a variety of neurodegenerative diseases. Recent investigation has revealed a novel role for autophagy in the context of mental illness, namely in schizophrenia. This article summarizes the phenomenology, genetics, and structural/histopathological brain abnormalities associated with schizophrenia. We review studies that demonstrate for the first time a connection between autophagy malfunction and schizophrenia. Transcriptional profiling in schizophrenia patients uncovered a dysregulation of autophagy-related genes spatially confined to a specific area of the cortex, Brodmann Area 22, which has been previously implicated in the positive symptoms of schizophrenia. We also discuss the role of autophagy activators in schizophrenia and whether they may be useful adjuvants to the traditional antipsychotic medications currently used as the standard of care. In summary, the field has progressed beyond the basic concept that autophagy impairment predisposes to neurodegeneration, to a mechanistic understanding that loss of autophagy can disrupt neuronal cell biology and predispose to mood disorders, psychotic symptoms, and behavioral change. 


2020 ◽  
Vol 26 (4) ◽  
pp. 449-453
Author(s):  
Jacob A. Kahn ◽  
Jeffrey T. Waltz ◽  
Ramin M. Eskandari ◽  
Cynthia T. Welsh ◽  
Michael U. Antonucci

The authors report an unusual presentation of juvenile xanthogranuloma (JXG), a non–Langerhans cell histiocytosis of infancy and early childhood. This entity typically presents as a cutaneous head or neck nodule but can manifest with more systemic involvement including in the central nervous system. However, currently there is limited information regarding specific imaging features differentiating JXG from other neuropathological entities, with diagnosis typically made only after tissue sampling. The authors reviewed the initial images of a young patient with shunt-treated hydrocephalus and enlarging, chronic, extraaxial processes presumed to reflect subdural collections from overshunting, and they examine the operative discovery of a mass lesion that was pathologically proven to be JXG. Their results incorporate the important associated histological and advanced imaging features, including previously unreported metabolic activity on FDG PET. Ultimately, the case underscores the need to consider JXG in differential diagnoses of pediatric intracranial masses and highlights the potential role of PET in the initial diagnosis and response to treatment.


2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


Sign in / Sign up

Export Citation Format

Share Document