scholarly journals Imaging Performance of Quantitative Transmission Ultrasound

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mark W. Lenox ◽  
James Wiskin ◽  
Matthew A. Lewis ◽  
Stephen Darrouzet ◽  
David Borup ◽  
...  

Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound.

1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


2021 ◽  
Vol 41 (2) ◽  
pp. 0208002
Author(s):  
李江勇 Li Jiangyong ◽  
冯位欣 Feng Weixin ◽  
刘飞 Liu Fei ◽  
魏雅喆 Wei Yazhe ◽  
邵晓鹏 Shao Xiaopeng

2021 ◽  
Author(s):  
Ruixiao Li ◽  
Zeuku Ho ◽  
Xiaodong Gu ◽  
Satoshi Shinada ◽  
Fumio Koyama

2011 ◽  
Author(s):  
W. Li ◽  
J. Gelb ◽  
Y. Yang ◽  
Y. Guan ◽  
W. Wu ◽  
...  

2020 ◽  
Vol 22 (19) ◽  
pp. 10853-10862
Author(s):  
Kenta Mizuse ◽  
Naoya Sakamoto ◽  
Romu Fujimoto ◽  
Yasuhiro Ohshima

High-resolution molecular movies of direction-controlled rotational wave packets are reported, providing insights into the creation process and detailed dynamics of wave packets.


Sign in / Sign up

Export Citation Format

Share Document