scholarly journals Ultrashort Pulsed Laser Ablation of Magnesium Diboride: Plasma Characterization and Thin Films Deposition

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Angela De Bonis ◽  
Agostino Galasso ◽  
Antonio Santagata ◽  
Roberto Teghil

A MgB2target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.


2020 ◽  
Vol 98 (5) ◽  
pp. 365-375
Author(s):  
Andrea Quintero ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  


2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  


2011 ◽  
Vol 1301 ◽  
Author(s):  
Rahul Chhabra ◽  
Hicham Fenniri

ABSTRACTElectroless synthesis and hierarchical organization of 1.4 nm Pd and Pt nanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described. The nucleated NPs are nearly monodisperse and reveal supramolecular organizations guided by RNT templates. Interestingly, the narrow size distribution is attributable to unique templating behavior of RNTs. The resulting metal NP-RNT composites were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was also performed to confirm the nature and composition of RNT-templated NPs.



2012 ◽  
Vol 16 (07n08) ◽  
pp. 713-740 ◽  
Author(s):  
José H. Zagal ◽  
Sophie Griveau ◽  
Mireya Santander-Nelli ◽  
Silvia Gutierrez Granados ◽  
Fethi Bedioui

We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.



2020 ◽  
Vol 10 (16) ◽  
pp. 5415
Author(s):  
Ashique Kotta ◽  
Hyung Kee Seo

Metal-oxide-based electrodes play a crucial role in various transparent conductive oxide (TCO) applications. Among the p-type materials, nickel oxide is a promising electrically conductive material due to its good stability, large bandgap, and deep valence band. Here, we display pristine and 3 at.%V-doped NiO synthesized by the solvothermal decomposition method. The properties of both the pristine and 3 at.%V:NiO nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, ultraviolet–visible spectroscopy (UV–vis), and X-ray photoelectron spectroscopy (XPS). The film properties were characterized by atomic force microscopy (AFM) and a source meter. Our results suggest that incorporation of vanadium into the NiO lattice significantly improves both electrical conductivity and hole extraction. Also, 3 at.%V:NiO exhibits a lower crystalline size when compared to pristine nickel oxide, which maintains the reduction of surface roughness. These results indicate that vanadium is an excellent dopant for NiO.





Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 612 ◽  
Author(s):  
Nancy Tepale ◽  
Víctor V. A. Fernández-Escamilla ◽  
Clara Carreon-Alvarez ◽  
Valeria J. González-Coronel ◽  
Adan Luna-Flores ◽  
...  

The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.



Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 425 ◽  
Author(s):  
Song Zhang ◽  
Tingting Wang ◽  
Ziyu Zhang ◽  
Jun Li ◽  
Rong Tu ◽  
...  

Direct-current magnetron sputtering (DCMS) was applied to prepare vanadium (V) films on Si substrate. The influence of substrate temperature (Ts) and target–substrate distance (Dt–s) on phase structure and surface morphology of V films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and transmission electron microscopy (TEM). The results show that the crystallinity of the V films increases with increasing Ts and decreasing Dt–s. The film deposited at Ts = 400 °C and Dt–s = 60 mm exhibits the best crystallinity and <111> preferred orientation with a regular tetrahedral surface morphology. Oxidation behavior of the V thin films has also been studied by X-ray photoelectron spectroscopy (XPS).



2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ravishankar Bhat ◽  
Raghunandan Deshpande ◽  
Sharanabasava V. Ganachari ◽  
Do Sung Huh ◽  
A. Venkataraman

This is a report on photo-irradiated extracellular synthesis of silver nanoparticles using the aqueous extract of edible oyster mushroom (Pleurotus florida) as a reducing agent. The appearance, size, and shape of the silver nanoparticles are understood by UV-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The X-ray diffraction studies, energy dispersive X-ray analysis indicate that particles are crystalline in nature. Fourier transform infrared spectroscopy analysis revealed that the nanoparticles are covered with biomoieties on their surface. As can be seen from our studies, the biofunctionalized silver nanoparticles thus produced have shown admirable antimicrobial effects, and the synthetic procedure involved is eco-friendly and simple, and hence high range production of the same can be considered for using them in many pharmaceutical applications.



2010 ◽  
Vol 160-162 ◽  
pp. 1006-1011
Author(s):  
Qin Han ◽  
Bing Cao ◽  
Li Ping Zhou ◽  
Hai Jian Zhong ◽  
Xiong Hui Zeng

We report the synthesis of single-crystalline α-Fe2O3 nanoflakes by the oxidation reaction of water vapor through a gas-solid method. The samples are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), micro-Raman spectrometer, and transmission electron microscopy (TEM). As-synthesized nanoflakes have a pseudotriangle morphology: 20-50 nm in thickness, 0.5-1.5 μm in length and base-width. It is observed that vertically aligned arrays of leaf-like α-Fe2O3 grow at the verges of the iron foils. The possible mechanism is discussed to elucidate the formation of α-Fe2O3 nanostructures. The experimental results indicate that water vapor plays an important role in controlling the morphology of the final products.



Sign in / Sign up

Export Citation Format

Share Document