scholarly journals Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chinnasamy Dhanalakshmi ◽  
Thamilarasan Manivasagam ◽  
Jagatheesan Nataraj ◽  
Arokiasamy Justin Thenmozhi ◽  
Musthafa Mohamed Essa

Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington’s disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5–200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5–200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kuppusamy Tamilselvam ◽  
Nady Braidy ◽  
Thamilarasan Manivasagam ◽  
Musthafa Mohamed Essa ◽  
Nagarajan Rajendra Prasad ◽  
...  

Rotenone a widely used pesticide that inhibits mitochondrial complex I has been used to investigate the pathobiology of PD bothin vitroandin vivo. Studies have shown that the neurotoxicity of rotenone may be related to its ability to generate reactive oxygen species (ROS), leading to neuronal apoptosis. The current study was carried out to investigate the neuroprotective effects of hesperidin, a citrus fruit flavanol, against rotenone-induced apoptosis in human neuroblastoma SK-N-SH cells. We assessed cell death, mitochondrial membrane potential, ROS generation, ATP levels, thiobarbituric acid reactive substances, reduced glutathione (GSH) levels, and the activity of catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) using well established assays. Apoptosis was determined in normal, rotenone, and hesperidin treated cells, by measuring the protein expression of cytochrome c (cyt c), caspases 3 and 9, Bax, and Bcl-2 using the standard western blotting technique. The apoptosis in rotenone-induced SK-N-SH cells was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, the depletion of GSH, enhanced activities of enzymatic antioxidants, upregulation of Bax, cyt c, and caspases 3 and 9, and downregulation of Bcl-2, which were attenuated in the presence of hesperidin. Our data suggests that hesperidin exerts its neuroprotective effect against rotenone due to its antioxidant, maintenance of mitochondrial function, and antiapoptotic properties in a neuroblastoma cell line.


2021 ◽  
Author(s):  
Marianne Mazevet ◽  
Maxance Ribeiro ◽  
Anissa Belhadef ◽  
Delphine Dayde ◽  
Anna Llach ◽  
...  

Rationale: The widely used chemotherapeutic agent Doxorubicin (Dox) induces cardiotoxicity leading to dilated cardiomyopathy and heart failure. This cardiotoxicity has been related to ROS generation, DNA intercalation, bioenergetic distress and cell death. However, alternative mechanisms are emerging, focusing on signaling pathways. Objective: We investigated the role of Exchange Protein directly Activated by cAMP (EPAC), key factor in cAMP signaling, in Dox-induced cardiotoxicity. Methods and Results: Dox was administrated in vivo (10 +/- 2 mg/kg, i.v.; with analysis at 2, 6 and 15 weeks post injection) in WT and EPAC1 KO C57BL6 mice. Cardiac function was analyzed by echocardiography and intracellular Ca2+ homeostasis by confocal microscopy in isolated ventricular cardiomyocytes. 15 weeks post-injections, Dox-treated WT mice, developed a dilated cardiomyopathy with decreased ejection fraction, increased telediastolic volume and impaired Ca2+ homeostasis, which were totally prevented in the EPAC1 KO mice. The underlying mechanisms were investigated in neonatal and adult rat cardiac myocytes under Dox treatment (1-10 uM). Flow cytometry, Western blot, BRET sensor assay, and RT-qPCR analysis showed that Dox induced DNA damage and cardiomyocyte cell death with apoptotic features rather than necrosis, including Ca2+-CaMKKβ-dependent opening of the Mitochondrial Permeability Transition Pore, dissipation of the Mitochondrial membrane potential, caspase activation, cell size reduction, and DNA fragmentation. Dox also led to an increase in both cAMP concentration and EPAC1 protein level and activity. The pharmacological inhibition of EPAC1 (CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations including DNA damage, Mitochondrial membrane potential, apoptosis, mitochondrial biogenesis, dynamic, and fission/fusion balance, and respiratory chain activity, suggesting a crucial role of EPAC1 in these processes. Importantly, while preserving cardiomyocyte integrity, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Conclusion: Thus, EPAC1 inhibition could be a valuable therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.


Author(s):  
Luukkonen Jukka ◽  
Höytö Anne ◽  
Sokka Miiko ◽  
Syväoja Juhani ◽  
Juutilainen Jukka ◽  
...  

AbstractIonizing radiation has been shown to cause induced genomic instability (IGI), which is defined as a persistently increased rate of genomic damage in the progeny of the exposed cells. In this study, IGI was investigated by exposing human SH-SY5Y neuroblastoma cells to hydroxyurea and zeocin, two chemicals mimicking different DNA-damaging effects of ionizing radiation. The aim was to explore whether IGI was associated with persistent mitochondrial dysfunction. Changes to mitochondrial function were assessed by analyzing mitochondrial superoxide production, mitochondrial membrane potential, and mitochondrial activity. The formation of micronuclei was used to determine immediate genetic damage and IGI. Measurements were performed either immediately, 8 days, or 15 days following exposure. Both hydroxyurea and zeocin increased mitochondrial superoxide production and affected mitochondrial activity immediately after exposure, and mitochondrial membrane potential was affected by zeocin, but no persistent changes in mitochondrial function were observed. IGI became manifested 15 days after exposure in hydroxyurea-exposed cells. In conclusion, immediate responses in mitochondrial function did not cause persistent dysfunction of mitochondria, and this dysfunction was not required for IGI in human neuroblastoma cells.


1997 ◽  
Vol 777 (1-2) ◽  
pp. 69-74 ◽  
Author(s):  
Antonio Camins ◽  
Francesc X Sureda ◽  
Cecilia Gabriel ◽  
Mercè Pallàs ◽  
Elena Escubedo ◽  
...  

Mitochondrion ◽  
2011 ◽  
Vol 11 (5) ◽  
pp. 700-706 ◽  
Author(s):  
Bernhard Kadenbach ◽  
Rabia Ramzan ◽  
Rainer Moosdorf ◽  
Sebastian Vogt

2004 ◽  
Vol 44 (supplement) ◽  
pp. S170
Author(s):  
H. Suzuki ◽  
K. Machida ◽  
K. Higashino ◽  
C. Fujita ◽  
H. Osada ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5558-5558
Author(s):  
Jishi Wang ◽  
Wei Sixi ◽  
Wang Yating ◽  
Chai Qixiang

Abstract Aim Using lentivirus-mediated HO-1 siRNA (lenti-siHO-1-GFP) to silence the HO-1 gene in Kasumi cells so as to explore the role and mechanism of HO-1 on cell apoptosis. Methods To infect Kasumi cells with lenti-siHO-1-GFP and check the infection efficiency by using fluorescence microscopy and flow cytometry (FCM). Experimental group was divided into three groups: untreated Kasumi (K), infected Kasumi by empty vector (lenti-GFP-K) and infected Kasumi by lentivirus-mediated HO-1 siRNA (lenti-siHO-1-K). The HO-1 expression of each group was detected by realtime PCR. Fluo3-AM method was used to detect the intracellular Ca2+ accumulation. DCFH-DA was used for the measurement of intracellular ROS. The change of mitochondrial membrane potential was evaluated by JC-1 stainning by using FCM. After being treated with various concentrations of daunorubicin for 24, 48, and 72 h respectively, cell viability was determined by MTT assay. Cell apoptosis was determined by FCM following with cells dual-stained with Annexin-V-FITC and propidium iodide (PI). The mRNA of HO-1 and apoptosis-related genes were analyzed by realtime PCR and, the expressions of their corresponding protein were determined by western blot. Additionally, After treating with 10mM Ca2+chelator BAPTA-AM and 0.5mM NAC for 12h, Ca2+ accumulation, ROS generation, the expression of HO-1 and apoptosis-related genes were detected respectively. Result presented in mean±sd manner. Results After lenti-siHO-1-GFP infection for 48h, we could observe the fluorescence clear, the fluorescent intensity was 95.87% after 72 hours. The HO-1 silencing efficiency of lenti-siHO-1-K was 77.00%. MTT result showed that daunorubicin exerted moderate inhibitory effects on cell proliferation in a dose and time dependent manner. With the same treating conditions, the cell viability of lenti-siHO-1-K group was significantly lower than the other two groups(e.g 49.20±1.30% survival in lenti-siHO-1-K group, 72.40±1.90% in K group and 74.10±2.10% in lenti-GFP-K group after being treated by 5ug/ml DNR,respectively, p=0.014), while the apoptosis rate was higher than the other two groups(e.g 75.77±3.41% in lenti-siHO-1-K group, 23.72±2.03% in K group and 26.10±1.95% in lenti-GFP-K group after being treated by 5ug/ml DNR,respectively, p=0.011). Compared with other two groups, the lenti-siHO-1-K group showed a downregulation in the mRNA and protein expression of HO-1. The mRNA and protein expressions of cyto-C, caspase3, caspase8, caspase9 and caspase12 in lenti-siHO-1-K group were upregulated after exposure to 5ug/ml daunorubicin for 24 hours. Compared with K and lenti-GFP-K groups, Ca2+ accumulation in lenti-siHO-1-K group was increased significantly(e.g 40.35±2.10% in lenti-siHO-1-K group, 17.30±1.81% in K group and 14.15±1.75% in lenti-GFP-K group,respectively, p=0.041). The ROS generation was higher than the other two groups(e.g 47.65±2.05% in lenti-siHO-1-K group, 21.30±1.94% in K group and19.90±2.01% in lenti-GFP-K group,respectively, p=0.037). The ratio of Green/Red fluorescence intensity increased significantly in lenti-siHO-1-K group(e.g 0.704±0.06 in lenti-siHO-1-K group, 0.57±0.09 in K group and 0.527±0.05 in lenti-GFP-K group, respectively, p=0.042). After exposure to 10mM BAPTA-AM and 0.1mM NAC alone or combined with, both the intracellular Ca2+accumulation and the ROS level in lenti-siHO-1-K group reduced(17.59±1.01% of Ca2+acumulation and 19.78±1.3% of ROS production after BAPTA-AM treatment alone, 23.42±1.97% of Ca2+and 15.47±1.14% of ROS after being treated by NAC alone, 16.52±1.23% of Ca2+and 14.37±1.21% of ROS after treatment by both agent) , while the mRNA and protein expressions of cyto-C, caspase3, caspase8, caspase9 and caspase12, decreased significantly. Conclusion HO-1 gene silencing played a role in pro-apoptosis in Kasumi cells. The mechanism may be related to the endoplasmic reticulum stress and abnormal accumulation of intracellular Ca2+, ROS generation, descending of the mitochondrial membrane potential and release cyto-C, then further activated the caspases cascade and promoted apoptosis. However, it tended to be initiated by crosstalk in Ca2+-ROS pathway. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 84 (5) ◽  
pp. 2421-2431 ◽  
Author(s):  
Chia-Yi Yu ◽  
Ruei-Lin Chiang ◽  
Tsung-Hsien Chang ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

ABSTRACT Interferon (IFN) signaling is initiated by the recognition of viral components by host pattern recognition receptors. Dengue virus (DEN) triggers IFN-β induction through a molecular mechanism involving the cellular RIG-I/MAVS signaling pathway. Here we report that the MAVS protein level is reduced in DEN-infected cells and that caspase-1 and caspase-3 cleave MAVS at residue D429. In addition to its well-known function in IFN induction, MAVS is also a proapoptotic molecule that triggers disruption of the mitochondrial membrane potential and activation of caspases. Although different domains are required for the induction of cytotoxicity and IFN, caspase cleavage at residue 429 abolished both functions of MAVS. The apoptotic role of MAVS in viral infection and double-stranded RNA (dsRNA) stimulation was demonstrated in cells with reduced endogenous MAVS expression induced by RNA interference. Even though IFN-β promoter activation was largely suppressed, DEN production was not affected greatly in MAVS knockdown cells. Instead, DEN- and dsRNA-induced cell death and caspase activation were delayed and attenuated in the cells with reduced levels of MAVS. These results reveal a new role of MAVS in the regulation of cell death beyond its well-known function of IFN induction in antiviral innate immunity.


Sign in / Sign up

Export Citation Format

Share Document