scholarly journals Effect of DC Link Control Strategies on Multiterminal AC-DC Power Flow

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Shagufta Khan ◽  
Suman Bhowmick

For power-flow solution of power systems incorporating multiterminal DC (MTDC) network(s), five quantities are required to be solved per converter. On the other hand, only three independent equations comprising two basic converter equations and one DC network equation exist per converter. Thus, for solution, two additional equations are required. These two equations are derived from the control specifications adopted for the DC links. Depending on the application, several combinations of valid control specifications are possible. Each combination of a set of valid control specifications is known as a control strategy. The number of control strategies increases with an increase in the number of the DC terminals or converters. It is observed that the power-flow convergence of integrated AC-MTDC power systems is strongly affected by the control strategy adopted for the DC links. This work investigates the mechanism by which different control strategies affect the power-flow convergence pattern of AC-MTDC power systems. To solve the DC variables in the Newton-Raphson (NR) power-flow model, sequential method is considered in this paper. Numerous case studies carried out on a three-terminal DC network incorporated in the IEEE-300 bus test system validate this.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1658
Author(s):  
Leandro Almeida Vasconcelos ◽  
João Alberto Passos Filho ◽  
André Luis Marques Marcato ◽  
Giovani Santiago Junqueira

The use of Direct Current (DC) transmission links in power systems is increasing continuously. Thus, it is important to develop new techniques to model the inclusion of these devices in network analysis, in order to allow studies of the operation and expansion planning of large-scale electric power systems. In this context, the main objective of this paper is to present a new methodology for a simultaneous AC-DC power flow for a multi-terminal High Voltage Direct Current (HVDC) system with a generic representation of the DC network. The proposed methodology is based on a full Newton formulation for solving the AC-DC power flow problem. Equations representing the converters and steady-state control strategies are included in a power flow problem formulation, resulting in an expanded Jacobian matrix of the Newton method. Some results are presented based on HVDC test systems to confirm the effectiveness of the proposed approach.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 824 ◽  
Author(s):  
Jinlian Liu ◽  
Zheng Xu ◽  
Liang Xiao

This paper aims to discover the general steady-state operation characteristics, as well as improving the dynamic performance, of the modular multilevel converter (MMC)-based unified power flow controller (UPFC). To achieve this, first, we established a detailed power flow model for MMC-based UPFC containing each critical part and made qualitative and graphical analyses combining 2-dimensional operation planes and 3-dimensional spatial curve surfaces comprehensively to derive general power flow principles and offer necessary references for regulating UPFC. Furthermore, to achieve better performance, we designed a feedforward control strategy for the shunt and series converters of UPFC, both comprising two feedforward control blocks with the introduction of necessary compensating branches, and analyzed the performance in complex and time domain, respectively. The proposed power flow principles and control strategies were validated by a (power systems computer aided design) PSCAD model of 220 kV double-end system; the results reveal the MMC-based UPFC can realize the power flow principles and improve the control speed, stability, and precision of the power flow regulations under various conditions.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3308
Author(s):  
Xingpeng Li

Though the full AC power flow model can accurately represent the physical power system, the use of this model is limited in practice due to the computational complexity associated with its non-linear and non-convexity characteristics. For instance, the AC power flow model is not incorporated in the unit commitment model for practical power systems. Instead, an alternative linearized DC power flow model is widely used in today’s power system operational and planning tools. However, DC power flow model will be useless when reactive power and voltage magnitude are of concern. Therefore, a linearized AC (LAC) power flow model is needed to address this issue. This paper first introduces a traditional LAC model and then proposes an enhanced data-driven linearized AC (DLAC) model using the regression analysis technique. Numerical simulations conducted on the Tennessee Valley Authority (TVA) system demonstrate the performance and effectiveness of the proposed DLAC model.


2020 ◽  
Vol 181 ◽  
pp. 03006
Author(s):  
Nduwamungu Aphrodis ◽  
Ntagwirumugara Etienne ◽  
Utetiwabo Wellars ◽  
Mulolani Francis

Faults in electrical power systems are among the key factors and sources to network disturbances, however control strategies are among key faults clearing techniques for the sake of safe operational mode of the system.Some researchers have shown various limitations of control strategies such as slow dynamic response,inability to switch Off and On network remotely and fault clearing time. For a system with wind energy technologies, if the power flow of a wind turbine is interrupted by a fault, the intermediate-circuit voltage between the machine-side converter and line-side converter will fall in unacceptably high values.To overcome the aforementioned issues, this paper used a Matlab simulations and experiments in order to analyze and validate the results.The results showed that fault ride through (FRT) with SCADA Viewer software are more adaptable to the variations of voltage and wind speed in order to avoid loss of synchronism. Therefore at the speed of 12.5m/s a wind produced a rated power of 750W and remained in synchronization before and after a fault created and cleared but worked as generator meanwhile at speed of 3.4m/s wind disconnected from grid and started working as a motor and consumed active power (P=-25watts) and voltage dip at 100% .For the protection purpose, the DC chopper and crowbar should be integrated towards management of excess energy during faults cases.


2021 ◽  
Author(s):  
THIAGO FIGUEIREDO DO NASCIMENTO ◽  
ANDRES ORTIZ SALAZAR

The integration of distributed generation (DG) systems based on renewable energy sources (RES) by using power converters is an emerging technology in modern power systems. Among the control strategies applied to this new configuration, the virtual synchronous generator (VSG) approach has proven to be an attractive solution due providing suitable dynamic performance. Thus, this paper presents a dynamic analysis of gridtied converters controlled by using VSG concept. This analysis is based on a dynamic model that describes the DG power flow transient characteristics. Based on this model, the grid impedance parameters variation effects on the VSG controllers dynamic performance are discussed. Simulation results are presented to evaluate the effectiveness of the theoretical analysis performed.


2021 ◽  
Author(s):  
Mohammadreza Vatani

AC-DC power systems have been operating more than sixty years. Nonlinear bus-wise power balance equations provide accurate model of AC-DC power systems. However, optimization tools for planning and operation require linear version, even if approximate, for creating tractable algorithms, considering modern elements such as DERs (distributed energy resources). Hitherto, linear models of only AC power systems are available, which coincidentally are called DC power flow. To address this drawback, linear bus-wise power balance equations are developed for AC-DC power systems and presented. As a first contribution, while AC and DC lines are represented by susceptance and conductance elements, AC-DC power converters are represented by a proposed linear relationship. As a second contribution, a three-step linear AC-DC power flow method is proposed. The first step solves the whole network considering it as a linear AC network, yielding bus phase angles at all busses. The second step computes attributes of the proposed linear model of all AC-DC power converters. The third step solves the linear model of the AC-DC system including converters, yielding bus phase angles at AC busses and voltage magnitudes at DC busses. The benefit of the proposed linear power flow model of AC-DC power system, while an approximation of the nonlinear model, enables representation of bus-wise power balance of AC-DC systems in complex planning and operational optimization formulations and hence holds the promise of phenomenal progress. The proposed linear AC-DC power systems is tested on numerous IEEE test systems and demonstrated to be fast, reliable, and consistent.


Sign in / Sign up

Export Citation Format

Share Document