scholarly journals Surface-Applied Biosolids Enhance Soil Organic Carbon and Nitrogen Stocks but Have Contrasting Effects on Soil Physical Quality

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Virginia L. Jin ◽  
Kenneth N. Potter ◽  
Mari-Vaughn V. Johnson ◽  
R. Daren Harmel ◽  
Jeffrey G. Arnold

Mid- to long-term impacts of land applying biosolids will depend on application rate, duration, and method; biosolids composition; and site-specific characteristics (e.g., climate, soils). This study evaluates the effects of surface-broadcast biosolids application rate and duration on soil organic carbon (SOC) stocks, soil aggregate stability, and selected soil hydraulic properties in a municipally operated, no-till forage production system. Total SOC stocks (0–45 cm soil) increased nonlinearly with application rate in perennial grass fields treated for 8 years with 0, 20, 40, or 60 Mg of Class B biosolids (DM) ha−1 yr−1(midterm treatments). Soil organic C stocks in long-term treatment fields receiving 20 years of 20 Mg ha−1 yr−1were 36% higher than those in midterm fields treated at the same rate. Surface-applying biosolids had contrasting effects on soil physical properties. Soil bulk density was little affected by biosolids applications, but applications were associated with decreased water-stable soil aggregates, increased soil water retention, and increased available water-holding capacity. This study contrasts the potential for C storage in soils treated with surface-applied biosolids with application effects on soil physical properties, underscoring the importance of site-specific management decisions for the beneficial reuse of biosolids in agricultural settings.

2009 ◽  
Vol 104 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Seul Bi Lee ◽  
Chang Hoon Lee ◽  
Ki Yuol Jung ◽  
Ki Do Park ◽  
Dokyoung Lee ◽  
...  

2020 ◽  
Vol 77 (4) ◽  
Author(s):  
Fernanda Cristina Caparelli Oliveira ◽  
Gabriel William Dias Ferreira ◽  
João Lucas Santos Souza ◽  
Matheus Emannuel Oliveira Vieira ◽  
Alceu Pedrotti

2003 ◽  
Vol 83 (4) ◽  
pp. 363-380 ◽  
Author(s):  
A. J. VandenBygaart ◽  
E. G. Gregorich ◽  
D. A. Angers

To fulfill commitments under the Kyoto Protocol, Canada is required to provide verifiable estimates and uncertainties for soil organic carbon (SOC) stocks, and for changes in those stocks over time. Estimates and uncertainties for agricultural soils can be derived from long-term studies that have measured differences in SOC between different management practices. We compiled published data from long-term studies in Canada to assess the effect of agricultural management on SOC. A total of 62 studies were compiled, in which the difference in SOC was determined for conversion from native land to cropland, and for different tillage, crop rotation and fertilizer management practices. There was a loss of 24 ± 6% of the SOC after native land was converted to agricultural land. No-till (NT) increased the storage of SOC in western Canada by 2.9 ± 1.3 Mg ha-1; however, in eastern Canada conversion to NT did not increase SOC. In general, the potential to store SOC when NT was adopted decreased with increasing background levels of SOC. Using no-tillage, reducing summer fallow, including hay in rotation with wheat (Triticum aestivum L.), plowing green manures into the soil, and applying N and organic fertilizers were the practices that tended to show the most consistent in creases in SOC storage. By relating treatment SOC levels to those in the control treatments, SOC stock change factors and their levels of uncertainty were derived for use in empirical models, such as the United Nations Intergovernmental Panel on Climate Change (IPCC). Guidelines model for C stock changes. However, we must be careful when attempting to extrapolate research plot data to farmers’ fields since the history of soil and crop management has a significant influence on existing and future SOC stocks. Key words: C sequestration, tillage, crop rotations, fertilizer, cropping intensity, Canada


2018 ◽  
Vol 7 (4) ◽  
pp. 103 ◽  
Author(s):  
Ngamindra Dahal ◽  
Roshan Man Bajracharya ◽  
Lal Mani Wagle

Coffee agroforestry is an emerging agricultural practice in the mid hills of Nepal. Smallholder farmers of low-income strata have progressively adopted coffee as a perennial crop over seasonal crops. A multi-year study was conducted to test effects of locally produced biochar derived from coffee wastes, e.g., pulp and husks, on carbon stocks of: i) coffee trees, and, ii) soil organic carbon (SOC) in selected coffee growing pockets. We conducted on-farm experimental trials in three different physiographical locations of the Nepal mid-hills, namely, Chandanpur (Site I at 1475masl), Panchkhal (Site II at 1075masl), and Talamarang (Site III at 821masl) where smallholders grow coffee together with other cereal crops and vegetables. We applied biochar to the soil at a rate of 5 Mgha-1, then, monitored the SOC and biomass growth of the coffee trees in the three treatment plots at sites I, II and III over two years beginning in 2013. The average stocks of aboveground carbon in coffee trees increased from 6.2±4.3 Mgha-1 to 9.1±5.2 Mgha-1 over the trial period of two years in biochar treated plots. The same in control plots increased from 5.6±2.8 Mgha-1 to 6.7±4.7 Mgha-1. In the biochar plots, the average increments of ABG carbon was 0.73 Mgh-1 while in the control it was 0.29 Mgh-1. Analysis of soil organic carbon of the plots indicated overall incremental change in carbon stocks in the coffee farms. During the base year, the average SOC stocks in the top 0-15cm layer of the soil at sites I, II, and III were estimated 74.88 ± 15.93; 63.96 ±16.71 and 33.05 ±4.42 Mgha-1 respectively. Although both the biochar treated and control plot registered incremental change in SOC stocks, the volumes were remarkably higher in the former than the latter. Compared to the baseline data, the changes in SOC stocks in the three biochar treated plots were 19.8, 49.8 and 45.3 Mgha-1, respectively, whereas in the control plots these were 8.3, 29.3 and 11.3 Mgha-1, respectively. The higher incremental rates of C-stocks in all the biochar treated plots in comparison to the corresponding control plots of the coffee agroforestry implies that application of biochar can enhance accumulation of carbon in the form of aboveground biomass and soil organic carbon.


2020 ◽  
Vol 17 (11) ◽  
pp. 2971-2986
Author(s):  
Marijn Van de Broek ◽  
Shiva Ghiasi ◽  
Charlotte Decock ◽  
Andreas Hund ◽  
Samuel Abiven ◽  
...  

Abstract. Over the past decades, average global wheat yields have increased by about 250 %, mainly due to the cultivation of high-yielding wheat cultivars. This selection process not only affected aboveground parts of plants, but in some cases also reduced root biomass, with potentially large consequences for the amount of organic carbon (OC) transferred to the soil. To study the effect of wheat breeding for high-yielding cultivars on subsoil OC dynamics, two old and two new wheat cultivars from the Swiss wheat breeding program were grown for one growing season in 1.5 m deep lysimeters and pulse labeled with 13CO2 to quantify the amount of assimilated carbon that was transferred belowground and can potentially be stabilized in the soil. The results show that although the old wheat cultivars with higher root biomass transferred more assimilated carbon belowground compared to more recent cultivars, no significant differences in net rhizodeposition were found between the different cultivars. As a consequence, the long-term effect of wheat cultivar selection on soil organic carbon (SOC) stocks will depend on the amount of root biomass that is stabilized in the soil. Our results suggest that the process of wheat selection for high-yielding cultivars resulted in lower amounts of belowground carbon translocation, with potentially important effects on SOC stocks. Further research is necessary to quantify the long-term importance of this effect.


2020 ◽  
Author(s):  
Marijn Van de Broek ◽  
Shiva Ghiasi ◽  
Charlotte Decock ◽  
Andreas Hund ◽  
Samuel Abiven ◽  
...  

Abstract. Over the past decades, average global wheat yields have increased by about 250 %, mainly due to the cultivation of high-yielding wheat cultivars. This selection process not only affected aboveground parts of plants, but in some cases also reduced the root biomass, with potentially large consequences for the amount of organic carbon (OC) transferred to the soil. To study the effect of wheat breeding for high-yielding cultivars on subsoil OC dynamics, two old and two new wheat cultivars from the Swiss wheat breeding program were grown for one growing season in 1.5 m-deep lysimeters and pulse-labelled with 13CO2, to quantify the amount of assimilated carbon that was transferred belowground and potentially stabilized in the soil. The results show that although the old wheat cultivars with higher root biomass transferred more assimilated carbon belowground compared to more recent cultivars, no significant differences in net soil organic carbon (SOC) stabilization were found between the different cultivars. As a consequence, the long-term effect of wheat cultivar selection on SOC stocks will depend on the amount of root biomass that is stabilized in the soil. Our results suggest that the process of wheat selection for high-yielding cultivars resulted in lower amounts of belowground carbon translocation, with potentially important effects on SOC stocks. Further research is necessary to quantify the long-term importance of this effect.


Soil Research ◽  
2015 ◽  
Vol 53 (6) ◽  
pp. 636 ◽  
Author(s):  
Fiona Robertson ◽  
Roger Armstrong ◽  
Debra Partington ◽  
Roger Perris ◽  
Ivanah Oliver ◽  
...  

Despite considerable research, predicting how soil organic carbon (SOC) in grain production systems will respond to conservation management practices, such as reduced tillage, residue retention and alternative rotations, remains difficult because of the slowness of change and apparent site specificity of the effects. We compared SOC stocks (equivalent soil mass to ~0–0.3 m depth) under various tillage, residue management and rotation treatments in three long-term (12-, 28- and 94-year-old) field experiments in two contrasting environments (Mallee and Wimmera regions). Our hypotheses were that SOC stocks are increased by: (1) minimum tillage rather than traditional tillage; (2) continuous cropping, rather than crop–fallow rotations; and (3) phases of crop or pasture legumes in rotations, relative to continuous cropping with cereals. We found that zero tillage and stubble retention increased SOC in some circumstances (by up to 1.5 Mg C ha–1, or 8%) but not in others. Inclusion of bare fallow in rotations reduced SOC (by 1.4–2.4 Mg C ha–1, or 8–12%) compared with continuous cropping. Including a pulse crop (field pea, where the grain was harvested) in rotations also increased SOC in some instances (by ~6–8 Mg C ha–1, or 29–35%) but not in others. Similarly, leguminous pasture (medic or lucerne) phases in rotations either increased SOC (by 3.5 Mg C ha–1, or 21%) or had no significant effect compared with continuous wheat. Inclusion of a vetch green manure or unfertilised oat pasture in the rotation did not significantly increase SOC compared with continuous wheat. The responses in SOC to these management treatments were likely to be due, in part, to differences in nitrogen and water availability (and their effects on carbon inputs and decomposition) and, in part, to other, unidentified, interactions. We conclude that the management practices examined in the present study may not reliably increase SOC on their own, but that significant increases in SOC are possible under some circumstances through the long-term use of multiple practices, such as stubble retention + zero tillage + legume N input + elimination of fallow. The circumstances under which increases in SOC can be achieved require further investigation.


2020 ◽  
Author(s):  
Alina Premrov ◽  
Jesko Zimmermann ◽  
Stuart Green ◽  
Reamonn Fealy ◽  
Matthew Saunders

<p><strong>Abstract</strong></p><p>Grassland represents the dominant land use in Ireland, and the estimation of soil organic carbon (SOC) stocks and changes for Irish grasslands requires further improvements. This study uses the ECOSSE 6.2b process-based model in site-specific mode (Smith et al., 2010) to predict SOC stocks and changes associated with different grassland management practices. The work presented here aims to provide preliminary insights into SOC modelling procedures. Five Irish sites under different grassland management were selected from the 2009 LUCAS SOC database (JRC, 2018). Due to the lack of repeated SOC measurements over time, the initial SOC input values (required for the simulation initialisation) were assigned from the Irish NSDB database (EPA, 2007). This was done based on the site-specific information from both databases such as distance and matching land-use. The initial SOC values from the NSDB were assigned to 2002 (i.e. the start of simulation). Information on management was obtained from the Irish Integrated Administration and Control System database,LPIS (Zimmermann et al., 2016b), climate data were obtained from MÉRA (Met Éireann, 2018) and atmospheric N deposition from http://www.emep.int (Premrov et al. 2019). Fertilisation inputs were adapted from the literature and categorised based on stocking rates derived from Green et al. (2016). The 2009 yearly averaged SOC predicted values were compared to LUCAS measured SOC across five sites (r<sup>2 </sup>= 0.06), showing over- and under-estimation of simulated SOC, which could be due to potential poor matching NSDB and LUCAS data. This result indicates that the repeated SOC field-measurements over the time are needed for proper model-parameterisation. This was further supported by the observed strong relationship between initial SOC inputs and ECOSSE predicted SOC (r<sup>2</sup> = 0.85) indicating the high sensitivity of model SOC predictions to the initial SOC inputs.</p><p> </p><p><strong>Acknowledgements</strong></p><p>SOLUM project is funded under the Irish EPA Research programme 2014-2020. Thanks go to Dr Marta Dondini (U. Aberdeen) and Dr Rowan Fealy (Maynooth U.) for their support.</p><p> </p><p><strong>Literature</strong></p><p>EPA, 2007. National Soils Database (NSDB). Environmental Protection Agency (EPA), Ireland.</p><p>Green, S., et.al., 2016. Cattle stocking rates estimated in temperate intensive grasslands with a spring growth model derived from MODIS NDVI time-series. Int. J. Appl. Earth Obs. & Geoinfo. 52, 166-174.</p><p>JRC, 2018. LUCAS 2009 TOPSOIL data, European Soil data Centre. Joint Research Centre. European Commission.</p><p>Met Éireann, 2018. MÉRA: Met Éireann Re-Analysis – Climate Re-analysis.</p><p>Premrov, A., et al., 2019. Biogeochemical modelling of soil organic carbon-insights into the processing procedures of selected atmospheric input data: Part II. IGRM2019.UCD. Dublin.</p><p>Smith, J., et al., 2010. ECOSSE. User Manual.</p><p>Zimmermann, J., et al., 2016. The Irish Land-Parcels Identification System (LPIS). Experiences in ongoing and recent environmental research and land cover mapping. Biol. & Environm. Proceedings RIA 116B, 53-62.</p>


2014 ◽  
Vol 11 (22) ◽  
pp. 6483-6493 ◽  
Author(s):  
C. Ferré ◽  
R. Comolli ◽  
A. Leip ◽  
G. Seufert

Abstract. Effects of forest conversion to poplar plantation on soil organic carbon (SOC) stocks were investigated by sampling paired plots in an alluvial area of the Ticino River in Northern Italy. According to land registers and historical aerial photographs, the two sites were part of a larger area of a 200 yr old natural forest that was partly converted to poplar plantation in 1973. The soil sampling of three layers down to a depth of 100 cm was performed at 90 and 70 points in the natural forest (NF) and in the nearby poplar plantation (PP) respectively. The substitution of the natural forest with the poplar plantation strongly modified soil C stock down to a depth of 55 cm, although the management practices at PP were not intensive. After calculation of equivalent soil masses and of SOC stocks in individual texture classes, the comparison of C stocks showed an overall decrease in SOC of 5.7 kg m−2 or 40% in consequence of 37 years of poplar cultivation. Our case study provides further evidence that (i) spatial heterogeneity of SOC is an important feature in paired plot studies requiring a careful sampling strategy and high enough number of samples; (ii) land use changes through tillage are creating a more homogeneous spatial structure of soil properties and may require the application of dedicated spatial statistics to tackle eventual problems of pseudo-replicates and auto-correlation; (iii) short rotation forests are not properly represented in current reporting schemes for changes of SOC after land use change and may better be considered as cropland.


Sign in / Sign up

Export Citation Format

Share Document