scholarly journals Recent Changes in the Annual Mean Regional Hadley Circulation and Their Impacts on South America

2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Ana Carolina Vasques Freitas ◽  
Tércio Ambrizzi

This work employs the regional climate model RegCM4 and observational datasets to investigate the impacts of changes in the intensity and poleward edge of regional HC over South America (HCSA) on the patterns of wind, geopotential height, precipitation, and temperature during the period 1996–2011. Significant trends of HCSA intensification and poleward expansion are found during the period analyzed. To evaluate the effects of these changes over SA, two composites, representing the intensification and poleward expansion cases, are examined separately. Significant correlations are seen between the temperature, zonal wind, and the HCSA intensity over the northern, central, and southern regions of SA and South Atlantic. Results show that, in both composites, regions with anomalous easterly (westerly) winds coming from (towards) the Atlantic Ocean have negative (positive) correlations with the HCSA intensity and poleward edge. The model performance varies regionally and the southern SA region exhibits better agreement with the observations. The role of the sea surface temperatures in driving the changes in the HCSA is examined. Notable similarity is found in the results for the two cases analyzed, which could indicate that, in most cases, the changes in the intensity and poleward edge of the HCSA are occurring simultaneously.

2017 ◽  
Vol 8 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Julia Jeworrek ◽  
Lichuan Wu ◽  
Christian Dieterich ◽  
Anna Rutgersson

Abstract. Convective snow bands develop in response to a cold air outbreak from the continent or the frozen sea over the open water surface of lakes or seas. The comparatively warm water body triggers shallow convection due to increased heat and moisture fluxes. Strong winds can align with this convection into wind-parallel cloud bands, which appear stationary as the wind direction remains consistent for the time period of the snow band event, delivering enduring snow precipitation at the approaching coast. The statistical analysis of a dataset from an 11-year high-resolution atmospheric regional climate model (RCA4) indicated 4 to 7 days a year of moderate to highly favourable conditions for the development of convective snow bands in the Baltic Sea region. The heaviest and most frequent lake effect snow was affecting the regions of Gävle and Västervik (along the Swedish east coast) as well as Gdansk (along the Polish coast). However, the hourly precipitation rate is often higher in Gävle than in the Västervik region. Two case studies comparing five different RCA4 model setups have shown that the Rossby Centre atmospheric regional climate model RCA4 provides a superior representation of the sea surface with more accurate sea surface temperature (SST) values when coupled to the ice–ocean model NEMO as opposed to the forcing by the ERA-40 reanalysis data. The refinement of the resolution of the atmospheric model component leads, especially in the horizontal direction, to significant improvement in the representation of the mesoscale circulation process as well as the local precipitation rate and area by the model.


2021 ◽  
Author(s):  
Jonathan Meyer ◽  
Shih-Yu (Simon) Wang ◽  
Robert Gillies ◽  
Jin-Ho Yoon

<p>The western U.S. precipitation climatology simulated by the NA-CORDEX regional climate model ensembles are examined to evaluate the capability of the 0.44<sup>° </sup>and 0.22<sup>° </sup>resolution<sup></sup>ensembles to reproduce 1) the annual and semi-annual precipitation cycle of several hydrologically important western U.S. regions and 2) localized seasonality in the amount and timing of precipitation. Collectively, when compared against observation-based gridded precipitation, NA-CORDEX RCMs driven by ERA-Interim reanalysis at the higher resolution 0.22<sup>° </sup>domain resolution dramatically outperformed the 0.44<sup>°</sup> ensemble over the 1950-2005 historical periods. Furthermore, the ability to capture the annual and semi-annual modes of variability was starkly improved in the higher resolution 0.22° ensemble. The higher resolution members reproduced more consistent spatial patterns of variance featuring lower errors in magnitude—especially with respect to the winter-summer and spring-fall seasonality. A great deal of spread in model performance was found for the semi-annual cycles, although the higher-resolution ensemble exhibited a more coherent clustering of performance metrics. In general, model performance was a function of which RCM was used, while future trend scenarios seem to cluster around which GCM was downscaled.</p><p><br>Future projections of precipitation patterns from the 0.22° NA-CORDEX RCMs driven by the RCP4.5 “stabilization scenario” and the RCP8.5 “high emission” scenario were analyzed to examine trends to the “end of century” (i.e. 2050-2099) precipitation patterns. Except for the Desert Southwest’s spring season, the RCP4.5 and RCP8.5 scenarios show a consensus change towards an increase in winter and spring precipitation throughout all regions of interest with the RCP8.5 scenario containing a greater number of ensemble members simulating greater wetting trends. The future winter-summer mode of variability exhibited a general consensus towards increasing variability with greatest change found over the region’s terrain suggesting a greater year-to-year variability of the region’s orographic response to the strength and location of the mid-latitude jet streams and storm track. Increasing spring-fall precipitation variability suggests an expanding influence of tropical moisture advection associated with the North American Monsoon, although we note that like many future monsoon projections, a spring “convective barrier” was also apparent in the NA-CORDEX ensembles.</p>


2012 ◽  
Vol 8 (5) ◽  
pp. 1599-1620 ◽  
Author(s):  
S. Wagner ◽  
I. Fast ◽  
F. Kaspar

Abstract. In this study, we assess how the anthropogenically induced increase in greenhouse gas concentrations affects the climate of central and southern South America. We utilise two regional climate simulations for present day (PD) and pre-industrial (PI) times. These simulations are compared to historical reconstructions in order to investigate the driving processes responsible for climatic changes between the different periods. The regional climate model is validated against observations for both re-analysis data and GCM-driven regional simulations for the second half of the 20th century. Model biases are also taken into account for the interpretation of the model results. The added value of the regional simulation over global-scale modelling relates to a better representation of hydrological processes that are particularly evident in the proximity of the Andes Mountains. Climatic differences between the simulated PD minus PI period agree qualitatively well with proxy-based temperature reconstructions, albeit the regional model overestimates the amplitude of the temperature increase. For precipitation the most important changes between the PD and PI simulation relate to a dipole pattern along the Andes Mountains with increased precipitation over the southern parts and reduced precipitation over the central parts. Here only a few regions show robust similarity with studies based on empirical evidence. However, from a dynamical point-of-view, atmospheric circulation changes related to an increase in high-latitude zonal wind speed simulated by the regional climate model are consistent with numerical modelling studies addressing changes in greenhouse gas concentrations. Our results indicate that besides the direct effect of greenhouse gas changes, large-scale changes in atmospheric circulation and sea surface temperatures also exert an influence on temperature and precipitation changes in southern South America. These combined changes in turn affect the relationship between climate and atmospheric circulation between PD and PI times and should be considered for the statistical reconstruction of climate indices calibrated within present-day climate data.


2017 ◽  
Vol 13 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Shawn Corvec ◽  
Christopher G. Fletcher

Abstract. The two components of the tropical overturning circulation, the meridional Hadley circulation (HC) and the zonal Walker circulation (WC), are key to the re-distribution of moisture, heat and mass in the atmosphere. The mid-Pliocene Warm Period (mPWP; ∼ 3.3–3 Ma) is considered a very rough analogue of near-term future climate change, yet changes to the tropical overturning circulations in the mPWP are poorly understood. Here, climate model simulations from the Pliocene Model Intercomparison Project (PlioMIP) are analyzed to show that the tropical overturning circulations in the mPWP were weaker than preindustrial circulations, just as they are projected to be in future climate change. The weakening HC response is consistent with future projections, and its strength is strongly related to the meridional gradient of sea surface warming between the tropical and subtropical oceans. The weakening of the WC is less robust in PlioMIP than in future projections, largely due to inter-model variations in simulated warming of the tropical Indian Ocean (TIO). When the TIO warms faster (slower) than the tropical mean, local upper tropospheric divergence increases (decreases) and the WC weakens less (more). These results provide strong evidence that changes to the tropical overturning circulation in the mPWP and future climate are primarily controlled by zonal (WC) and meridional (HC) gradients in tropical–subtropical sea surface temperatures.


Sign in / Sign up

Export Citation Format

Share Document