scholarly journals Optimizing Perfusion-Decellularization Methods of Porcine Livers for Clinical-Scale Whole-Organ Bioengineering

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Qiong Wu ◽  
Ji Bao ◽  
Yong-jie Zhou ◽  
Yu-jia Wang ◽  
Zheng-gui Du ◽  
...  

Aim. To refine the decellularization protocol of whole porcine liver, which holds great promise for liver tissue engineering.Methods. Three decellularization methods for porcine livers (1% sodium dodecyl sulfate (SDS), 1% Triton X-100 + 1% sodium dodecyl sulfate, and 1% sodium deoxycholate + 1% sodium dodecyl sulfate) were studied. The obtained liver scaffolds were processed for histology, residual cellular content analysis, and extracellular matrix (ECM) components evaluation to investigate decellularization efficiency and ECM preservation. Rat primary hepatocytes were seeded into three kinds of scaffold to detect the biocompatibility.Results. The whole liver decellularization was successfully achieved following all three kinds of treatment. SDS combined with Triton had a high efficacy of cellular removal and caused minimal disruption of essential ECM components; it was also the most biocompatible procedure for primary hepatocytes.Conclusion. We have refined a novel, standardized, time-efficient, and reproducible protocol for the decellularization of whole liver which can be further adapted to liver tissue engineering.

Author(s):  
Mohammad Amin Keshvari ◽  
Alireza Afshar ◽  
Sajad Daneshi ◽  
Arezoo Khoradmehr ◽  
Mandana Baghban ◽  
...  

Chronic kidney diseases (CKD) and end stage renal disease (ESRD) are growing threats worldwide. Tissue engineering is a new hope to surpass the current limitations such as the shortage of donor. To do so, the first step would be fabrication of an intact decellularized kidney scaffold. In the current study, an automatic decellularization device was developed to perfuse and decellularize male rats' kidneys using both sodium lauryl ether sulfate (SLES) and sodium dodecyl sulfate (SDS) and to compare their efficacy in kidney decellularization and post-transplantation angiogenesis. After anesthesia, kidneys were perfused with either 1% SDS solution for 4 h or 1% SLES solution for 6 h. The decellularized scaffolds were stained with hematoxylin and eosin (H&E), periodic acid Schiff (PAS), Masson’s trichrome, and alcian blue to determine cell removal and glycogen, collagen and glycosaminoglycans (GAGs) contents, respectively. Moreover, scanning electron microscopy (SEM) was performed to evaluate the cell removal and preservation of microarchitecture of both SDS and SLES scaffolds. Additionally, DNA quantification assay was applied for all groups in order to measure residual DNA in the scaffolds and normal kidney. In order to demonstrate biocompatibility and bioactivity of the decellularized scaffolds, allotransplantation was performed in back muscle and angiogenesis was evaluated. Complete cell removal in both SLES and SDS groups was observed in SEM and DNA quantification assays. Moreover, the extracellular matrix (ECM) architecture of rat kidney in the SLES group was significantly preservation better than the SDS group was shown. The formation of blood capillaries and vessels were observed in the kidney allotransplantations in both SLES and SDS decellularized kidneys. In conclusion, we demonstrated that both SLES and SDS could be promising tools in kidney tissue engineering. The better preservation of ECM than SDS, introduces SLES as the solvent of choice for kidney decellularization. ¬¬


2010 ◽  
Vol 16 (3) ◽  
pp. 1031-1040 ◽  
Author(s):  
Thomas Tischer ◽  
Sebastian Aryee ◽  
Gabriele Wexel ◽  
Erwin Steinhauser ◽  
Christopher Adamczyk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document