scholarly journals A Scalable Unsegmented Multiport Memory for FPGA-Based Systems

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kevin R. Townsend ◽  
Osama G. Attia ◽  
Phillip H. Jones ◽  
Joseph Zambreno

On-chip multiport memory cores are crucial primitives for many modern high-performance reconfigurable architectures and multicore systems. Previous approaches for scaling memory cores come at the cost of operating frequency, communication overhead, and logic resources without increasing the storage capacity of the memory. In this paper, we present two approaches for designing multiport memory cores that are suitable for reconfigurable accelerators with substantial on-chip memory or complex communication. Our design approaches tackle these challenges by banking RAM blocks and utilizing interconnect networks which allows scaling without sacrificing logic resources. With banking, memory congestion is unavoidable and we evaluate our multiport memory cores under different memory access patterns to gain insights about different design trade-offs. We demonstrate our implementation with up to 256 memory ports using a Xilinx Virtex-7 FPGA. Our experimental results report high throughput memories with resource usage that scales with the number of ports.

2008 ◽  
Vol 3 (1) ◽  
pp. 23-31
Author(s):  
Everton Carara ◽  
Ney Calazans ◽  
Fernando Moraes

For almost a decade now, Network on Chip (NoC) concepts have evolved to provide an interesting alternative to more traditional intrachip communication architectures (e.g. shared busses) for the design of complex Systems on Chip (SoCs). A considerable number of NoC proposals are available, focusing on different sets of optimization aspects, related to specific classes of applications. Each such application employs a NoC as part of its underlying implementation infrastructure. Many of the mentioned optimization aspects target results such as Quality of Service (QoS) achievement and/or power consumption reduction. On the other hand, the use of NoCs brings about the solution of new design problems, such to the choice of synchronization method to employ between NoC routers and application modules mapping. Although the availability of NoC structures is already rather ample, some design choices are at base of many, if not most, NoC proposals. These include the use of wormhole packet switching and virtual channels. This work pledges against this practice. It discusses trade-offs of using circuit or packet switching, arguing in favor the use of the former with fixed size packets (cells). Quantitative data supports the argumentation. Also, the work proposes and justifies replacing the use of virtual channels by replicated channels, based on the abundance of wires in current and expected deep sub-micron technologies. Finally, the work proposes a transmission method coupling the use of session layer structures to circuit switching to better support application implementation. The main reported result is the availability of a router with reduced latency and area, a communication architecture adapted for high-performance applications.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1984 ◽  
Author(s):  
Kevin Darras ◽  
Bjørn Kolbrek ◽  
Andreas Knorr ◽  
Volker Meyer

Passive acoustic monitoring of wildlife requires microphones. Several cheap, high-performance open-source solutions currently exist for recording sounds, but all of them are still reliant on commercial microphones. Commercial microphones are relatively expensive, specialized on particular taxa, and often have opaque technical specifications. We designed Sonitor, an open-source microphone system to address all needs of ecologists that sample terrestrial wildlife acoustically. We evaluated the cost of our system and measured trade-offs that are seldom acknowledged but which universally limit microphones' functions: weatherproofing versus sound attenuation, windproofing versus transmission loss after rain, signal loss in long cables, and analog sound amplification and directivity with acoustic horns. We propose three microphone configurations suiting different budgets, sound qualities, and flexibility requirements, which all cover the entire sound frequency spectrum of sonant terrestrial wildlife at a fraction of the cost of commercial microphones.


2021 ◽  
Author(s):  
David Moss

Abstract We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for the transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, up to 200-GHz frequency spacing of the Kerr optical comb can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to the calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of first-order, second-order, and third-order differentiation functions based on the principle are presented. The radio frequency (RF) amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.


2014 ◽  
Vol 556-562 ◽  
pp. 4303-4308
Author(s):  
Hua Long Zhao

As the demand of higher image quality and greater processing capabilities are growing, obtaining higher data bandwidth for on-chip processing is becoming a more and more important issue. DMA (Direct Memory Access) component, as the key element in stream processing SoC (System on Chip) [1], should be deeply researched and designed to satisfy the high data bandwidth requirement of processing units. In this paper, we introduce a scalable high-performance DMA architecture for complex SoC to satisfy rigorous high sustained bandwidth and versatile functionality requirements. Several techniques and structures are proposed in this paper. A state-in-art verification environment is built for our design to fully verify its functionality. At the end of the paper, the tape-out results are provided. The whole implementation has been silicon proven to be functional and efficient.


2020 ◽  
Author(s):  
David Moss

We investigate the application of integrated micro-combs in RF photonic systems and demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator. The on-chip Kerr optical comb is CMOS-compatible and contains a large number of comb lines, which can serve as a high-performance multi-wavelength source for the transversal filter, thus greatly reduce the cost, size, and complexity of the system. The operation principle is theoretically analyzed, and experimental demonstrations of fractional-, first-, second-, and third-order differentiation functions based on the principle are presented.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 763
Author(s):  
Venkateswara Rao Musala ◽  
T V Rama Krishna

Route specific information with the SoC needs a great deal of wiring, which increases the Resistance & Capacitance (RC) component of the system. Network on Chip (NoC) is utilized as the interface to address the problems in SoC, On-chip interconnection network in NoC has gained more consideration over steadfast wiring and buses, like lower latency, scalability and high performance. Present routing algorithms in NoC is suffered from load balancing at incarnation networks under non-uniform traffic conditions, causes increase the NoC trade-offs (latency and throughput). Adaptive routing is a technique to progress the load balance, but previous adaptive routing techniques used uniform traffic patterns to form the routing decisions. This paper proposes a new approach at non- uniform traffic patterns in channel state and path specific, Path Aware Routing (PAR XY-X) uses a timeout piggybacking for acknowledgement and load shedding to avoid congestion which choose optimistic path calculation unit to connect the destination node without glue logic decisions in routing. PAR XY-X outperforms the Normal XY routing by 20% and 33% with respect to Avg.latency and throughput.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1984
Author(s):  
Kevin Darras ◽  
Bjørn Kolbrek ◽  
Andreas Knorr ◽  
Volker Meyer ◽  
Mike Zippert

Passive acoustic monitoring of wildlife requires sound recording systems. Several cheap, high-performance open-source solutions currently exist for recording soundscapes, but all of them are still reliant on commercial microphones. Commercial microphones are relatively expensive, specialized for particular taxa, and often have incomplete technical specifications. We designed Sonitor, an open-source microphone system to address all needs of ecologists that sample terrestrial wildlife acoustically. We evaluated the cost and durability of our system and measured trade-offs that are seldom acknowledged but which universally limit microphones' functions: weatherproofing versus sound attenuation, windproofing versus transmission loss after rain, signal loss in long cables, and analog sound amplification versus directivity with acoustic horns. We propose five microphone configurations suiting different budgets (from 8 to 33 EUR per unit), and fulfilling different sound quality and flexibility requirements. The Sonitor system consists of sturdy acoustic sensors that cover the entire sound frequency spectrum of sonant terrestrial wildlife at a fraction of the cost of commercial microphones.


F1000Research ◽  
2021 ◽  
Vol 7 ◽  
pp. 1984
Author(s):  
Kevin Darras ◽  
Bjørn Kolbrek ◽  
Andreas Knorr ◽  
Volker Meyer ◽  
Mike Zippert ◽  
...  

Passive acoustic monitoring of wildlife requires sound recording systems. Several cheap, high-performance, or open-source solutions currently exist for recording soundscapes, but all rely on commercial microphones. Commercial microphones are relatively expensive, specialized for particular taxa, and often have incomplete technical specifications. We designed Sonitor, an open-source microphone system to address all needs of ecologists that sample terrestrial wildlife acoustically. We evaluated the cost and durability of our system and measured trade-offs that are seldom acknowledged but which universally limit microphones' functions: weatherproofing versus sound attenuation, windproofing versus transmission loss after rain, signal loss in long cables, and analog sound amplification versus directivity with acoustic horns. We propose five microphone configurations suiting different budgets (from 8 to 33 EUR per unit), and fulfilling different sound quality and flexibility requirements. The Sonitor system consists of sturdy acoustic sensors that cover the entire sound frequency spectrum of sonant terrestrial wildlife at a fraction of the cost of commercial microphones.


Sign in / Sign up

Export Citation Format

Share Document