scholarly journals Cloud-BIM Enabled Cyber-Physical Data and Service Platforms for Building Component Reuse

2020 ◽  
Vol 12 (24) ◽  
pp. 10329
Author(s):  
Ke Xing ◽  
Ki Pyung Kim ◽  
David Ness

While the Circular Economy in the built environment is often viewed in terms of recycling, more value can be obtained from buildings and physical components by their reuse, aided by stewardship and remanufacture, to ensure optimum performance capability. The use of cyber-physical information for online identification, examination and exchange of reusable components may improve their life-cycle management and circularity. To this end, a bi-directional data exchange system is established between physical building components and their virtual Building Information Modeling (BIM) counterparts, so that their life-cycle information—including history of ownership, maintenance record, technical specifications and physical condition—can be tracked, monitored and managed. The resultant prototype Cloud-based BIM platform is then adapted to support an ongoing product-service relationship between suppliers/providers and users/clients. A case study from a major new hospital, focusing upon an example of internal framed glazed systems, is presented for ”proof of concept” and to demonstrate the application of the proposed method. The result of the case study shows that, informed by the life-cycle data from the Cloud-BIM platform, a “lease with reuse” service option is able to deliver a lower total cost and less carbon intensity for each unit of frame-glazed module. This leads to a higher level of eco-efficiency, coupled with decreased consumption of material resources and reduced generation of waste. The research is expected to serve as a step forward in the era of Industry 4.0 and illuminate a more sophisticated way to manage building assets.

The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Author(s):  
Lisa Lenz ◽  
Kai Christian Weist ◽  
Marvin Hoepfner ◽  
Panagiotis Spyridis ◽  
Mike Gralla

AbstractIn the last few years, particular focus has been devoted to the life cycle performance of fastening systems, which is reflected in increasing numbers of publications, standards and large-scale research efforts. Simultaneously, experience shows that in many cases, where fastening systems are implemented – such as industrial facilities – the design of fasteners is governed by fatigue loading under dynamic characteristics. In order to perform an adequate design and to specify the most efficient and appropriate fastening product, the engineer needs to access and process a broad range of technical and commercial information. Building information modelling (BIM), as a data management method in the construction industry, can supply such information and accommodate a comprehensive design and specification process. Furthermore, the application of BIM-based processes, such as the generation of a BIM-model, allows to use the important information for the construction as well as the life cycle management with different actions and time dependencies of the asset and its components. As a consequence, the BIM model offers the potential to correlate different data relevant for achieving the goals of the respective application, in order to ensure a more effective and correct design of the fastening. This paper demonstrates such a BIM-based design framework for an Industry 4.0 case, and in particular, the installation of a factory robot through post-installed anchors under fatigue-relevant loading in concrete.


2021 ◽  
Vol 263 ◽  
pp. 05029
Author(s):  
Maxim Zheleznov ◽  
Liubov Adamtsevich ◽  
Pavel Vorobev ◽  
Zoya Filimonova

In this paper, the authors consider the current state and level of implementation of building information modeling applied to transport infrastructure at the stages of their life cycle in Russia and abroad. Possible prerequisites for the transfer of knowledge and technologies of building information modeling from the civil and industrial facilities to the field of transport construction are highlighted according to the accumulated experience in the design, construction and operation of such facilities in various countries and Russia. Special emphasis is placed on examples of the world’s largest implemented or ongoing projects for the construction of transport infrastructure. The experience of implementing these projects was analyzed from the point of view of the software used in relation to all stages of the life cycle of transport infrastructure objects: design, construction and subsequent operation. The prospects for the development of data exchange formats in the context of the existing problem of mutual integration of BIM and GIS for transport infrastructure objects to ensure their complementarity and compatibility are also considered. The functional levels of the use of various software within the framework of companies implementing project activities using information modeling technologies are highlighted. A list of criteria characterizing the level of information modeling technologies integration to transport infrastructure objects into the activities of participants in the life cycle of these objects is highlighted. A review of the regulatory framework of information modeling in construction in Russia is carried out, and the main differences in this area with the regulatory regulation of this area in the European Union are noted. Conclusions are made about the key reference points for the development of information modeling of transport infrastructure facilities on a national scale, leading customer companies and contractors.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Changhai Peng ◽  
Xiao Wu

Using building information modeling (BIM) and Ecotect, this paper estimated carbon emissions during an office building’s life cycle. This building’s life cycle CO2emissions were divided into three parts: the construction, operation, and demolition stages. Among these, the statistics on the schedule of quantities were generated using BIM, and the energy consumption during the building’s operational stage was obtained using ECOTECT simulation. Sensitivity analysis was performed by changing several alternative parameters, to identify which parameter has more impacts on building performance. The paper demonstrated that (1) BIM and Ecotect are very helpful in estimating carbon emissions from a building’s life cycle, (2) the primary and effective measures to reduce the building’s CO2emissions in hot and humid climate should be arranged as follows: (a) within the limits of comfort, reducing the fresh air volume; (b) extending the indoor temperature range; (c) improving the thermal insulation performance of exterior windows, walls, and roofs; (d) exploiting natural ventilation during transition seasons, and (3) currently there are some limitations in performing LCA based on BIM and Ecotect.


Sign in / Sign up

Export Citation Format

Share Document