scholarly journals A Novel Fuzzy Sliding-Mode Control for Discrete-Time Uncertain System

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
T. H. Yan ◽  
B. Wu ◽  
B. He ◽  
W. H. Li ◽  
R. B. Wang

This paper considers the sliding-mode control problem for discrete-time uncertain systems. It begins by presenting a discrete variable speed reaching law and a discrete-time sliding-mode controller (DSMC) designed using the proposed reaching law, followed by an analysis of their stability and dynamic performance. A sliding-mode controller with simple fuzzy logic is then proposed to further strengthen the dynamic performance of the proposed sliding-mode controller. Finally, the presented DSMC and the DSMC with fuzzy control for adjusting the parameters in this paper are compared with one of the previous proposed classic DSMC systems. The results of this simulation show that the DSMC presented here can suppress chatter and ensure good dynamic performances when fuzzy logic is used to tune the parameters.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1882
Author(s):  
Piotr Leśniewski ◽  
Andrzej Bartoszewicz

In this paper, discrete time reaching law-based sliding mode control of continuous time systems is considered. In sliding mode control methods, usually the assumption of bounded absolute values of disturbances is used. However in many cases, the rate of change of the disturbance is also bounded. In the presented approach, this knowledge is used to improve the control precision and reduce the undesirable chattering. Another advantage of the proposed method is that the disturbance does not have to satisfy the matching conditions. In the paper two new reaching laws are analyzed, one of them ensures the switching quasi-sliding motion and the other the non-switching motion. For both of them, the robustness is assessed by calculating the quasi-sliding mode band width, as well as the greatest possible state error values. Specifically, the state errors are not considered only at the sampling instants, as is usual for discrete time systems, but the bounds on the continuous values “between” the sampling instants are also derived. Then, the proposed approaches are compared and analyzed with respect to energy expenditure of the control signal.


2000 ◽  
Author(s):  
J. Choi ◽  
C. W. de Silva ◽  
V. J. Modi ◽  
A. K. Misra

Abstract This paper focuses a robust and knowledge-based control approach for multi-link robot manipulator systems. Based on the concepts of sliding-mode control and fuzzy logic control (FLC), a fuzzy sliding-mode controller has been developed in previous work. This controller possesses good robustness properties of sliding-mode control and the flexibility and ‘intelligent’ capabilities of knowledge-based control through the use of fuzzy logic. This paper presents experimental studies with fuzzy sliding-mode control as well as conventional sliding-mode control. The results show that the tracking error is guaranteed to converge to a specification in the presence of uncertainties. The performance of the fuzzy sliding-mode controller is found to be somewhat better than that of the conventional sliding-mode controller.


2013 ◽  
Vol 347-350 ◽  
pp. 302-306 ◽  
Author(s):  
Ji Chen Li ◽  
Feng Qi Gao ◽  
Guang Long Wang ◽  
Ming Wang ◽  
Wen Jie Zhu ◽  
...  

Novel reaching law to nonsingular terminal sliding mode control for the control of the second order nonlinear uncertain system is introduced in this paper. The problems of singularity, chattering and slow convergence of the terminal sliding mode control, and verify the stability of the new controller is analyzed. Due to the premise of eliminating the singular value in the nonsingular terminal sliding mode control, the new reaching law based on the power reaching law enables the finite time convergence of the system equilibrium. By applying the new controller to the inverted pendulum system, the sliding surface had been proved fast and the system chattering had been reduced at the same time. Simulation results indict that the system converges to the equilibrium in a short time and the proposed method is feasible and effective.


Automatica ◽  
2015 ◽  
Vol 52 ◽  
pp. 83-86 ◽  
Author(s):  
Sohom Chakrabarty ◽  
Bijnan Bandyopadhyay

Author(s):  
Chao Zhang ◽  
Liwei Zhang ◽  
Bo Peng ◽  
He Zhao

Background: The permanent magnet synchronous linear motor is a strongly coupled, nonlinear system. It has been applied in many fields, especially in the field of machining lathes and rail transportation. In order to ensure the permanent magnet synchronous linear motor has good dynamic performance and robustness, sliding mode control is gradually applied to the control system of permanent magnet synchronous linear motor. However, in the traditional sliding mode control, the convergence speed is slow, and the robust performance is poor when the sliding surface is not reached. Objective: The main purpose of this paper is to improve the dynamic performance and robustness of the permanent magnet synchronous linear motor during the process of approaching the sliding surface. Methods: Firstly, the type of nonlinear curve with "small error reduction, large error saturation" is introduced to design a nonlinear integral speed controller with global robustness. Secondly, the gain rate time-varying reaching law is introduced to reduce "chattering". Finally, using a symbolic tangent function instead of a sign function in designing a sliding mode observer reduces fluctuations in load observations. Results: Finally, the correctness and effectiveness of the control method are proved by simulation. Conclusion: The results of the simulation show that the nonlinear integral sliding mode controller based on gain time-varying reaching law is shown to have good global robustness and dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document