scholarly journals Trends in Extreme Precipitation Indices in Iran: 1951–2007

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Robert C. Balling ◽  
Mohammad Sadegh Keikhosravi Kiany ◽  
Shouraseni Sen Roy ◽  
Javad Khoshhal

We investigate trends in extreme precipitation in Iran for 1951–2007 using the recently released APHRODITE daily rainfall time series. We find that seven different indices of extreme precipitation all show an upward trend through the study period. The seven different precipitation indices include annual precipitation total, number of days above a certain threshold, maximum precipitation received over a certain period of time, maximum one-day precipitation, and number of days with precipitation above the 90th percentile. A principal components analysis reveals one eigenvector explaining much of the variance in the seven indices and reveals that this component exhibits a strong upward trend for the whole of Iran. On a regional level, we find that the upward trend in extreme precipitation has a strong southwest-to-northeast gradient across the country for all the indices. We repeated all the analyses for 42 stations across the country to compare with the results from the gridded data; trends in extreme rainfall generated from the station data compare favorably with the results from the APHRODITE daily rainfall time series thereby reinforcing the robustness of our conclusions.

2017 ◽  
pp. 63-76
Author(s):  
Nattapon Mahavik

Rainfall intensity and frequency are important parameters in agricultural development and water resource management. The middle of the Indochina peninsula climate is characterized by rainfall variability associated with complex terrains. The present study focuses on spatial seasonal extreme precipitation trends over the middle of the Indochina Peninsula for the 30 year period from 1978-2007. Daily gridded precipitation data obtained at 0.5° horizontal grid resolution from APHRODITE (Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources) was used to detect the spatial trends with the use of the Man-Kendall and Theil-Sen approach. Extreme precipitation indices were selected from the WMO–CCL/CLIVAR list of extreme precipitation indices focusing on intensity and frequency. The study shows a consistently increasing upward trend at 10.04 dfrom the WDAY index. In seasonal analysis, the pre-monsoon trend shows a significant upward trend in the PRCTOT index, while the WDAY index for pre-monsoon season has the highest correlation coefficient in downward trend. Spatial analysis of extreme precipitation indices shows that the PRCTOT index of the pre-monsoon season has the largest percentage change in significant upward trend over the northern Basins that are consistent with MAX and Mean but not for WDAY. In addition, the inter-annual relationship between the Oceanic Nino Index and PRCTOT is shown in relation with the La Niña phase for both April and May.


Author(s):  
N. Yamoat ◽  
R. Hanchoowong ◽  
S. Sriboonlue ◽  
A. Kangrang

Abstract Due to climate change, many research studies have derived the updated extreme precipitation intensity–duration–frequency relationship (IDF curve) from forecasted sub-hourly rainfall intensity time series, which is one of the most important tools for the planning and designing of hydraulic infrastructures. In this study, the IDF curves (1990–2016) of the six regions and procedures are used in accordance with those of the Royal Irrigation Department (RID)’s study (1950–1988). Each set of IDF relationships consists of 81 intensity values which are the combination of nine durations and nine return periods. The intensity ratios of this study and RID are compared. A greater-than-1 ratio indicates extreme intensity increment from the past to the present. Considering 81 ratios for each region, the number of greater-than-1 ratios for the North, Northeast, Central, East, West, and South regions are 8, 2, 31, 34, 6, and 7, respectively. These ratio numbers are far below 81 which means that the majority of extreme rainfall intensities do not increase from the past to the present. The study found that using accurate historical sub-hourly rainfall time series to create a set of IDF curves would be more reliable than using forecasted rainfall modeling.


2021 ◽  
Author(s):  
Shakti Suryavanshi ◽  
Nitin Joshi ◽  
Hardeep Kumar Maurya ◽  
Divya Gupta ◽  
Keshav Kumar Sharma

Abstract This study examines the pattern and trend of seasonal and annual precipitation along with extreme precipitation events in a data scare, south Asian country, Afghanistan. Seven extreme precipitation indices were considered based upon intensity, duration and frequency of precipitation events. The study revealed that precipitation pattern of Afghanistan is unevenly distributed at seasonal and yearly scales. Southern and Southwestern provinces remain significantly dry whereas, the Northern and Northeastern provinces receive comparatively higher precipitation. Spring and winter seasons bring about 80% of yearly precipitation in Afghanistan. However, a notable declining precipitation trend was observed in these two seasons. An increasing trend in precipitation was observed for the summer and autumn seasons, however; these seasons are the lean periods for precipitation. A declining annual precipitation trend was also revealed in many provinces of Afghanistan. Analysis of extreme precipitation indices reveals a general drier condition in Afghanistan. Large spatial variability was found in precipitation indices. In many provinces of Afghanistan, a significantly declining trends were observed in intensity-based (Rx1-day, RX5-day, SDII and R95p) and frequency-based (R10) precipitation indices. The duration-based precipitation indices (CDD and CWD) also infer a general drier climatic condition in Afghanistan. This study will assist the agriculture and allied sectors to take well-planned adaptive measures in dealing with the changing patterns of precipitation, and additionally, facilitating future studies for Afghanistan.


2010 ◽  
Vol 7 (4) ◽  
pp. 4957-4994 ◽  
Author(s):  
R. Deidda

Abstract. Previous studies indicate the generalized Pareto distribution (GPD) as a suitable distribution function to reliably describe the exceedances of daily rainfall records above a proper optimum threshold, which should be selected as small as possible to retain the largest sample while assuring an acceptable fitting. Such an optimum threshold may differ from site to site, affecting consequently not only the GPD scale parameter, but also the probability of threshold exceedance. Thus a first objective of this paper is to derive some expressions to parameterize a simple threshold-invariant three-parameter distribution function which is able to describe zero and non zero values of rainfall time series by assuring a perfect overlapping with the GPD fitted on the exceedances of any threshold larger than the optimum one. Since the proposed distribution does not depend on the local thresholds adopted for fitting the GPD, it will only reflect the on-site climatic signature and thus appears particularly suitable for hydrological applications and regional analyses. A second objective is to develop and test the Multiple Threshold Method (MTM) to infer the parameters of interest on the exceedances of a wide range of thresholds using again the concept of parameters threshold-invariance. We show the ability of the MTM in fitting historical daily rainfall time series recorded with different resolutions. Finally, we prove the supremacy of the MTM fit against the standard single threshold fit, often adopted for partial duration series, by evaluating and comparing the performances on Monte Carlo samples drawn by GPDs with different shape and scale parameters and different discretizations.


Agromet ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 41-51
Author(s):  
. Misnawati ◽  
Mega Perdanawanti

Extreme climate events have significant impacts on various sectors such as agriculture, ecosystem, health and energy. The issue would lead to economic losses as well as social problems. This study aims to investigate the trend of extreme precipitation in Sumatera Island based on observed data during 30-year period, 1981–2010. There are ten indices of climate extreme as defined by ETCCDMI, which were tested in this study, including PRCPTOT, SDII, CDD, CWD, R10, R50, R95p, R99p, Rx1day and Rx5day. Then, the trend was analyzed based on the Mann-Kendall statistic, performed on the time series of precipitation data. The result shows that there was positive trend of extreme precipitation found in most stations over Sumatera, either statistically significant or insignificant. In each extreme precipitation indices, the number of observed stations indicating the insignificant change is higher than the significant one. This research also found that some indices including SDII, Rx1day, R50, R95p and R99p, showed a significantly-positive trend followed by a higher intensity of wetter and heavier events of extreme precipitation over Sumatera. On the other hand, the wet spell (CWD) index shows a negative trend (α=0.05).


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1453 ◽  
Author(s):  
Junnan Xiong ◽  
Zhiwei Yong ◽  
Zegen Wang ◽  
Weiming Cheng ◽  
Yi Li ◽  
...  

The Tibetan Plateau is one of the most vulnerable areas to extreme precipitation. In recent decades, water cycles have accelerated, and the temporal and spatial characteristics of extreme precipitation have undergone dramatic changes across the Tibetan Plateau, especially in its various ecosystems. However, there are few studies that considered the variation of extreme precipitation in various ecosystems, and the impact of El Niño-Southern Oscillation (ENSO), and few researchers have made a quantitative analysis between them. In this study, we analyzed the spatial and temporal pattern of 10 extreme precipitation indices across the Tibetan Plateau (including its four main ecosystems: Forest, alpine meadow, alpine steppe, and desert steppe) based on daily precipitation from 76 meteorological stations over the past 30 years. We used the linear least squares method and Pearson correlation coefficient to examine variation magnitudes of 10 extreme precipitation indices and correlation. Temporal pattern indicated that consecutive wet days (CWD) had a slightly decreasing trend (slope = −0.006), consecutive dry days (CDD), simple daily intensity (SDII), and extreme wet day precipitation (R99) displayed significant increasing trends, while the trends of other indices were not significant. For spatial patterns, the increasing trends of nine extreme precipitation indices (excluding CDD) occurred in the southwestern, middle and northern regions of the Tibetan Plateau; decreasing trends were distributed in the southeastern region, while the spatial pattern of CDD showed the opposite distribution. As to the four different ecosystems, the number of moderate precipitation days (R10mm), number of heavy precipitation days (R20mm), wet day precipitation (PRCPTOT), and very wet day precipitation (R95) in forest ecosystems showed decreasing trends, but CDD exhibited a significant increasing trend (slope = 0.625, P < 0.05). In the other three ecosystems, all extreme precipitation indices generally exhibited increasing trends, except for CWD in alpine meadow (slope = −0.001) and desert steppe (slope = −0.005). Furthermore, the crossover wavelet transform indicated that the ENSO had a 4-year resonance cycle with R95, SDII, R20mm, and CWD. These results provided additional evidence that ENSO play an important remote driver for extreme precipitation variation in the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document