scholarly journals Defect Detection in Tire X-Ray Images Using Weighted Texture Dissimilarity

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Guo ◽  
Caiming Zhang ◽  
Hui Liu ◽  
Xiaofeng Zhang

Automatic defect detection is an important and challenging problem in industrial quality inspection. This paper proposes an efficient defect detection method for tire quality assurance, which takes advantage of the feature similarity of tire images to capture the anomalies. The proposed detection algorithm mainly consists of three steps. Firstly, the local kernel regression descriptor is exploited to derive a set of feature vectors of an inspected tire image. These feature vectors are used to evaluate the feature dissimilarity of pixels. Next, the texture distortion degree of each pixel is estimated by weighted averaging of the dissimilarity between one pixel and its neighbors, which results in an anomaly map of the inspected image. Finally, the defects are located by segmenting this anomaly map with a simple thresholding process. Different from some existing detection algorithms that fail to work for tire tread images, the proposed detection algorithm works well not only for sidewall images but also for tread images. Experimental results demonstrate that the proposed algorithm can accurately locate the defects of tire images and outperforms the traditional defect detection algorithms in terms of various quantitative metrics.

2013 ◽  
Vol 290 ◽  
pp. 71-77
Author(s):  
Wen Ming Guo ◽  
Yan Qin Chen

In the current industrial production, as steel weld X-ray images are low contrasted and noisy, the efficiency and precision can’t be both ensured. This paper has studied three different edge detection algorithms and found the most suitable one to detect weld defects. Combined with this edge detection algorithm, we proposed a new weld defects detection method. This method uses defect features to find the defects in edge images with morphological processing. Compared to the traditional methods, the method has ensured detection quality of weld defects detection.


2018 ◽  
Vol 8 (9) ◽  
pp. 1678 ◽  
Author(s):  
Yiting Li ◽  
Haisong Huang ◽  
Qingsheng Xie ◽  
Liguo Yao ◽  
Qipeng Chen

This paper aims to achieve real-time and accurate detection of surface defects by using a deep learning method. For this purpose, the Single Shot MultiBox Detector (SSD) network was adopted as the meta structure and combined with the base convolution neural network (CNN) MobileNet into the MobileNet-SSD. Then, a detection method for surface defects was proposed based on the MobileNet-SSD. Specifically, the structure of the SSD was optimized without sacrificing its accuracy, and the network structure and parameters were adjusted to streamline the detection model. The proposed method was applied to the detection of typical defects like breaches, dents, burrs and abrasions on the sealing surface of a container in the filling line. The results show that our method can automatically detect surface defects more accurately and rapidly than lightweight network methods and traditional machine learning methods. The research results shed new light on defect detection in actual industrial scenarios.


Information ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Liying Wang ◽  
Lei Shi ◽  
Liancheng Xu ◽  
Peiyu Liu ◽  
Lindong Zhang ◽  
...  

Recently, outlier detection has widespread applications in different areas. The task is to identify outliers in the dataset and extract potential information. The existing outlier detection algorithms mainly do not solve the problems of parameter selection and high computational cost, which leaves enough room for further improvements. To solve the above problems, our paper proposes a parameter-free outlier detection algorithm based on dataset optimization method. Firstly, we propose a dataset optimization method (DOM), which initializes the original dataset in which density is greater than a specific threshold. In this method, we propose the concepts of partition function (P) and threshold function (T). Secondly, we establish a parameter-free outlier detection method. Similarly, we propose the concept of the number of residual neighbors, as the number of residual neighbors and the size of data clusters are used as the basis of outlier detection to obtain a more accurate outlier set. Finally, extensive experiments are carried out on a variety of datasets and experimental results show that our method performs well in terms of the efficiency of outlier detection and time complexity.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2524 ◽  
Author(s):  
Guo Zhao ◽  
Shiyin Qin

Automatic defect detection is an important and challenging issue in the tire industrial quality control. As is well known, the production quality of tire is directly related to the vehicle running safety and passenger security. However, it is difficult to inspect the inner structure of tire on the surface. This paper proposes a high-precision detection of defects of tire texture image obtained by X-ray image sensor for tire non-destructive inspection. In this paper, the feature distribution generated by local inverse difference moment (LIDM) features is proposed to be an effective representation of tire X-ray texture image. Further, the defect feature map (DFM) may be constructed by computing the Hausdorff distance between the LIDM feature distributions of original tire image and each sliding image patch. Moreover, DFM may be enhanced to improve the robustness of defect detection algorithm by a background suppression. Finally, an effective defect detection algorithm is proposed to achieve the pixel-level detection of defects with high precision over the enhanced DFM. In addition, the defect detection algorithm is not only robust to the noise in the background, but also has a more powerful capability of handling different shapes of defects. To validate the performance of our proposed method, two kinds of experiments about the defect feature map and defect detection are conducted to demonstrate its good performance. Moreover, a series of comparative analyses demonstrate that the proposed algorithm can accurately detect the defects and outperforms other algorithms in terms of various quantitative metrics.


2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Pengcheng Yin ◽  
Jiyi Zhang ◽  
Xiying Sun ◽  
Di Hu ◽  
Zhifeng Shi ◽  
...  

Vertex concavity-convexity detection for spatial objects is a basic algorithm of computer graphics, as well as the foundation for the implementation of other graphics algorithms. In recent years, the importance of the vertex concavity-convexity detection algorithm for three-dimensional (3D) spatial objects has been increasingly highlighted, with the development of 3D modeling, artificial intelligence, and other graphics technologies. Nonetheless, the currently available vertex concavity-convexity detection algorithms mostly use two-dimensional (2D) polygons, with limited research on vertex concavity-convexity detection algorithms for 3D polyhedrons. This study investigates the correlation between the outer product and the topology of the spatial object based on the unique characteristic that the outer product operation in the geometric algebra has unified and definitive geometric implications in space, and with varied dimensionality. Moreover, a multi-dimensional unified vertex concavity-convexity detection algorithm framework for spatial objects is proposed, and this framework is capable of detecting vertex concavity-convexity for both 2D simple polygons and 3D simple polyhedrons.


Author(s):  
Wenbai Chen ◽  
Chao He ◽  
Chen W.Z. ◽  
Chen Q.L. ◽  
Wu P.L.

Home helper robots have become more acceptable due to their excellent image recognition ability. However, some common household tools remain challenging to recognize, classify, and use by robots. We designed a detection method for the functional components of common household tools based on the mask regional convolutional neural network (Mask-R-CNN). This method is a multitask branching target detection algorithm that includes tool classification, target box regression, and semantic segmentation. It provides accurate recognition of the functional components of tools. The method is compared with existing algorithms on the dataset UMD Part Affordance dataset and exhibits effective instance segmentation and key point detection, with higher accuracy and robustness than two traditional algorithms. The proposed method helps the robot understand and use household tools better than traditional object detection algorithms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255135
Author(s):  
Chunming Wu ◽  
Xin Ma ◽  
Xiangxu Kong ◽  
Haichao Zhu

The reliability of the insulator has directly affected the stable operation of electric power system. The detection of defective insulators has always been an important issue in smart grid systems. However, the traditional transmission line detection method has low accuracy and poor real-time performance. We present an insulator defect detection method based on CenterNet. In order to improve detection efficiency, we simplified the backbone network. In addition, an attention mechanism is utilized to suppress useless information and improve the accuracy of network detection. In image preprocessing, the blurring of some detected images results in the samples being discarded, so we use super-resolution reconstruction algorithm to reconstruct the blurred images to enhance the dataset. The results show that the AP of the proposed method reaches 96.16% and the reasoning speed reaches 30FPS under the test condition of NVIDIA GTX 1080 test conditions. Compared with Faster R-CNN, YOLOV3, RetinaNet and FSAF, the detection accuracy of proposed method is greatly improved, which fully proves the effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jicun Zhang ◽  
Xueping Song ◽  
Jiawei Feng ◽  
Jiyou Fei

It is an important part of security inspection to carry out security and safety screening with X-ray scanners. Computer vision plays an important role in detection, recognition, and location analysis in intelligent manufacturing. The object detection algorithm is an important part of the intelligent X-ray machine. Existing threat object detection algorithms in X-ray images have low detection precision and are prone to missed and false detection. In order to increase the precision, a new improved Mask R-CNN algorithm is proposed in this paper. In the feature extraction network, an enhancement path is added to fuse the features of the lower layer into the higher layer, which reduces the loss of feature information. By adding an edge detection module, the training effect of the sample model can be improved without accurate labeling. The distance, overlap rate, and scale difference between objects and region proposals are solved using DIoU to improve the stability of the region proposal’s regression, thus improving the accuracy of object detection; SoftNMS algorithm is used to overcome the problem of missed detection when the objects to be detected overlap each other. The experimental results indicate that the mean Average Precision (mAP) of the improved algorithm is 9.32% higher than that of the Mask R-CNN algorithm, especially for knife and portable batteries, which are small in size, simple in shape, and easy to be mistakenly detected, and the Average Precision (AP) is increased by 13.41% and 15.92%, respectively. The results of the study have important implications for the practical application of threat object detection in X-ray images.


Sign in / Sign up

Export Citation Format

Share Document