scholarly journals A New Semantic-Based Tool Detection Method for Robots

Author(s):  
Wenbai Chen ◽  
Chao He ◽  
Chen W.Z. ◽  
Chen Q.L. ◽  
Wu P.L.

Home helper robots have become more acceptable due to their excellent image recognition ability. However, some common household tools remain challenging to recognize, classify, and use by robots. We designed a detection method for the functional components of common household tools based on the mask regional convolutional neural network (Mask-R-CNN). This method is a multitask branching target detection algorithm that includes tool classification, target box regression, and semantic segmentation. It provides accurate recognition of the functional components of tools. The method is compared with existing algorithms on the dataset UMD Part Affordance dataset and exhibits effective instance segmentation and key point detection, with higher accuracy and robustness than two traditional algorithms. The proposed method helps the robot understand and use household tools better than traditional object detection algorithms.

2013 ◽  
Vol 756-759 ◽  
pp. 3183-3188
Author(s):  
Tao Lei ◽  
Deng Ping He ◽  
Fang Tang Chen

BLAST can achieve high speed data communication. Its signal detection directly affects performance of BLAST receiver. This paper introduced several signal detection algorithmsZF algorithm, MMSE algorithm, ZF-SIC algorithm and MMSE-SIC algorithm. The simulation results show that the traditional ZF algorithm has the worst performance, the traditional MMSE algorithm and the ZF-SIC algorithm is similar, but with the increase of the SNR, the performance of ZF-SIC algorithm is better than MMSE algorithm. MMSE-SIC algorithm has the best detection performance in these detection algorithms.


Information ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Liying Wang ◽  
Lei Shi ◽  
Liancheng Xu ◽  
Peiyu Liu ◽  
Lindong Zhang ◽  
...  

Recently, outlier detection has widespread applications in different areas. The task is to identify outliers in the dataset and extract potential information. The existing outlier detection algorithms mainly do not solve the problems of parameter selection and high computational cost, which leaves enough room for further improvements. To solve the above problems, our paper proposes a parameter-free outlier detection algorithm based on dataset optimization method. Firstly, we propose a dataset optimization method (DOM), which initializes the original dataset in which density is greater than a specific threshold. In this method, we propose the concepts of partition function (P) and threshold function (T). Secondly, we establish a parameter-free outlier detection method. Similarly, we propose the concept of the number of residual neighbors, as the number of residual neighbors and the size of data clusters are used as the basis of outlier detection to obtain a more accurate outlier set. Finally, extensive experiments are carried out on a variety of datasets and experimental results show that our method performs well in terms of the efficiency of outlier detection and time complexity.


Author(s):  
S. T. Yekeen ◽  
A.-L. Balogun

Abstract. This study developed a novel deep learning oil spill instance segmentation model using Mask-Region-based Convolutional Neural Network (Mask R-CNN) model which is a state-of-the-art computer vision model. A total of 2882 imageries containing oil spill, look-alike, ship, and land area after conducting different pre-processing activities were acquired. These images were subsequently sub-divided into 88% training and 12% for testing, equating to 2530 and 352 images respectively. The model training was conducted using transfer learning on a pre-trained ResNet 101 with COCO data as a backbone in combination with Feature Pyramid Network (FPN) architecture for the extraction of features at 30 epochs with 0.001 learning rate. The model’s performance was evaluated using precision, recall, and F1-measure which shows a higher performance than other existing models with value of 0.964, 0.969 and 0.968 respectively. As a specialized task, the study concluded that the developed deep learning instance segmentation model (Mask R-CNN) performs better than conventional machine learning models and semantic segmentation deep learning models in detection and segmentation of marine oil spill.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gang Li ◽  
Yongqiang Chen ◽  
Jian Zhou ◽  
Xuan Zheng ◽  
Xue Li

PurposePeriodic inspection and maintenance are essential for effective pavement preservation. Cracks not only affect the appearance of the road and reduce the levelness, but also shorten the life of road. However, traditional road crack detection methods based on manual investigations and image processing are costly, inefficiency and unreliable. The research aims to replace the traditional road crack detection method and further improve the detection effect.Design/methodology/approachIn this paper, a crack detection method based on matrix network fusing corner-based detection and segmentation network is proposed to effectively identify cracks. The method combines ResNet 152 with matrix network as the backbone network to achieve feature reuse of the crack. The crack region is identified by corners, and segmentation network is constructed to extract the crack. Finally, parameters such as the length and width of the cracks were calculated from the geometric characteristics of the cracks and the relative errors with the actual values were 4.23 and 6.98% respectively.FindingsTo improve the accuracy of crack detection, the model was optimized with the Adam algorithm and mixed with two publicly available datasets for model training and testing and compared with various methods. The results show that the detection performance of our method is better than many excellent algorithms, and the anti-interference ability is strong.Originality/valueThis paper proposed a new type of road crack detection method. The detection effect is better than a variety of detection algorithms and has strong anti-interference ability, which can completely replace traditional crack detection methods and meet engineering needs.


2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Pengcheng Yin ◽  
Jiyi Zhang ◽  
Xiying Sun ◽  
Di Hu ◽  
Zhifeng Shi ◽  
...  

Vertex concavity-convexity detection for spatial objects is a basic algorithm of computer graphics, as well as the foundation for the implementation of other graphics algorithms. In recent years, the importance of the vertex concavity-convexity detection algorithm for three-dimensional (3D) spatial objects has been increasingly highlighted, with the development of 3D modeling, artificial intelligence, and other graphics technologies. Nonetheless, the currently available vertex concavity-convexity detection algorithms mostly use two-dimensional (2D) polygons, with limited research on vertex concavity-convexity detection algorithms for 3D polyhedrons. This study investigates the correlation between the outer product and the topology of the spatial object based on the unique characteristic that the outer product operation in the geometric algebra has unified and definitive geometric implications in space, and with varied dimensionality. Moreover, a multi-dimensional unified vertex concavity-convexity detection algorithm framework for spatial objects is proposed, and this framework is capable of detecting vertex concavity-convexity for both 2D simple polygons and 3D simple polyhedrons.


2013 ◽  
Vol 290 ◽  
pp. 71-77
Author(s):  
Wen Ming Guo ◽  
Yan Qin Chen

In the current industrial production, as steel weld X-ray images are low contrasted and noisy, the efficiency and precision can’t be both ensured. This paper has studied three different edge detection algorithms and found the most suitable one to detect weld defects. Combined with this edge detection algorithm, we proposed a new weld defects detection method. This method uses defect features to find the defects in edge images with morphological processing. Compared to the traditional methods, the method has ensured detection quality of weld defects detection.


2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Min Mao ◽  
Kuang-Rong Hao ◽  
Yong-Sheng Ding

For the areas of low textured in image pairs, there is nearly no point that can be detected by traditional methods. The information in these areas will not be extracted by classical interest-point detectors. In this paper, a novel weakly textured point detection method is presented. The points with weakly textured characteristic are detected by the symmetry concept. The proposed approach considers the gray variability of the weakly textured local regions. The detection mechanism can be separated into three steps: region-similarity computation, candidate point searching, and refinement of weakly textured point set. The mechanism of radius scale selection and texture strength conception are used in the second step and the third step, respectively. The matching algorithm based on sparse representation (SRM) is used for matching the detected points in different images. The results obtained on image sets with different objects show high robustness of the method to background and intraclass variations as well as to different photometric and geometric transformations; the points detected by this method are also the complement of points detected by classical detectors from the literature. And we also verify the efficacy of SRM by comparing with classical algorithms under the occlusion and corruption situations for matching the weakly textured points. Experiments demonstrate the effectiveness of the proposed weakly textured point detection algorithm.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 701-709
Author(s):  
Jianjun Zhao ◽  
Junwu Zhou

AbstractIn process industry control, process data is critical for both control and fault diagnosis. Timely detection of outliers and mutation point in process data can quickly adjust control parameters or discover potential failures throughout the system. Aiming at the shortcomings of the traditional mutation point detection method, such as the detection time delay and not being suitable for the process industrial data that mixed outliers, this paper proposes a mutation point and outliers detection method that is suitable for the grinding grading system using the wavelet method to analyze the “Efficient Scoring Vector.” In this algorithm, to distinguish between outliers and mutation points in the detection process, we propose a detection framework based on the relationship between Lipschitz index and wavelet coefficients. Under this framework, the detection algorithm proposed in this paper can detect outliers and mutation points simultaneously. The advantage of this is that the accuracy of the mutation point detection is not affected by the outliers. This means that the method can process grinding grading system process data containing outliers and mutation points under actual operating conditions and is more suitable for practical applications. Finally, the effectiveness and practicability of the proposed detection method are proved by simulation results.


2021 ◽  
pp. 1-17
Author(s):  
Xin Wen Gao ◽  
ShuaiQing Li ◽  
Bang Yang Jin ◽  
Min Hu ◽  
Wei Ding

With the large-scale construction of urban subways, the detection of tunnel cracks becomes particularly important. Due to the complexity of the tunnel environment, it is difficult for traditional tunnel crack detection algorithms to detect and segment such cracks quickly and accurately. The article presents an optimal adaptive selection model (RetinaNet-AOS) based on deep learning RetinaNet for semantic segmentation on tunnel crack images quickly and accurately. The algorithm uses the ROI merge mask to obtain a minimum detection area of the crack in the field of view. A scorer is designed to measure the effect of ROI region segmentation to achieve optimal results, and further optimized with a multi-dimensional classifier. The algorithm is compared with the standard detection based on RetinaNet algorithm with an optimal adaptive selection based on RetinaNet algorithm for different crack types. The results show that our crack detection algorithm not only addresses interference due to mash cracks, slender cracks, and water stains but also the false detection rate decreases from 25.5–35.5% to about 3.6%. Meanwhile, the experimental results focus on the execution time to be calculated on the algorithm, FCN, PSPNet, UNet. The algorithm gives better performance in terms of time complexity.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lixin Wang ◽  
Jianhua Yang ◽  
Michael Workman ◽  
Peng-Jun Wan

Hackers on the Internet usually send attacking packets using compromised hosts, called stepping-stones, in order to avoid being detected and caught. With stepping-stone attacks, an intruder remotely logins these stepping-stones using programs like SSH or telnet, uses a chain of Internet hosts as relay machines, and then sends the attacking packets. A great number of detection approaches have been developed for stepping-stone intrusion (SSI) in the literature. Many of these existing detection methods worked effectively only when session manipulation by intruders is not present. When the session is manipulated by attackers, there are few known effective detection methods for SSI. It is important to know whether a detection algorithm for SSI is resistant on session manipulation by attackers. For session manipulation with chaff perturbation, software tools such as Scapy can be used to inject meaningless packets into a data stream. However, to the best of our knowledge, there are no existing effective tools or efficient algorithms to produce time-jittered network traffic that can be used to test whether an SSI detection method is resistant on intruders’ time-jittering manipulation. In this paper, we propose a framework to test resistency of detection algorithms for SSI on time-jittering manipulation. Our proposed framework can be used to test whether an existing or new SSI detection method is resistant on session manipulation by intruders with time-jittering.


Sign in / Sign up

Export Citation Format

Share Document