scholarly journals Application of Cerium (IV) as an Oxidimetric Agent for the Determination of Ethionamide in Pharmaceutical Formulations

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kanakapura Basavaiah ◽  
Nagib A. S. Qarah ◽  
Sameer A. M. Abdulrahman

Two simple methods are described for the determination of ethionamide (ETM) in bulk drug and tablets using cerium (IV) sulphate as the oxidimetric agent. In both methods, the sample solution is treated with a measured excess of cerium (IV) solution in H2SO4 medium, and after a fixed standing time, the residual oxidant is determined either by back titration with standard iron (II) solution to a ferroin end point in titrimetry or by reacting with o-dianisidine followed by measurement of the absorbance of the orange-red coloured product at 470 nm in spectrophotometry. In titrimetry, the reaction proceeded with a stoichiometry of 1 : 2 (ETM : Ce (IV)) and the amount of cerium (IV) consumed by ETM was related to the latter’s amount, and the method was applicable over 1.0–8.0 mg of drug. In spectrophotometry, Beer’s law was obeyed over the concentration range of 0.5–5.0 μg/mL ETM with a molar absorptivity value of 2.66 × 104 L/(mol·cm). The limits of detection (LOD) and quantification (LOQ) calculated according to ICH guidelines were 0.013 and 0.043 μg/mL, respectively. The proposed titrimetric and spectrophotometric methods were found to yield reliable results when applied to bulk drug and tablets analysis, and hence they can be applied in quality control laboratories.

2015 ◽  
Vol 51 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Nagaraju Swamy ◽  
Kudige Nagaraj Prashanth ◽  
Kanakapura Basavaiah

One titrimetric and two spectrophotometric methods are proposed for the determination of diethylcarbamazine citrate (DEC) in bulk drug and in formulations using potassium iodate and potassium iodide as reagent. The methods employ the well-known analytical reaction between iodate and iodide in the presence of acid. In titrimetry (method A), the drug was treated with a measured excess of thiosulfate in the presence of unmeasured excess of iodate-iodide mixture and after a standing time of 10 min, the surplus thiosulfate was determined by back titration with iodine towards starch end point. Titrimetric assay is based on a 1:3 reaction stoichiometry between DEC and iodine and the method is applicable over 2.0-10.0 mg range. The liberated iodine is measured spectrophotometrically at 370 nm (method B) or the iodine-starch complex measured at 570 nm (method C). In both methods, the absorbance is found to be linearly dependent on the concentration of iodine, which in turn is related to DEC concentration. The calibration curves are linear over 2.5-50 and 2.5-30 µg mL-1 DEC for method B and method C, respectively. The calculated molar absorptivity and Sandell sensitivity values were 6.48×103 L mol-1 cm-1 and 0.0604 µg cm-2, respectively, for method B, and their respective values for method C are 9.96×103 L mol-1 cm-1 and 0.0393 µg cm-2. The intra-day and inter-day accuracy and precision studies were carried out according to the ICH guidelines. The methods were successfully applied to the analysis of DEC formulations.


2006 ◽  
Vol 3 (3) ◽  
pp. 173-181
Author(s):  
K. Basavaiah ◽  
U. R. Anil Kumar

Two new spectrophotometric methods are proposed for the determination of zidovudine(ZDV) in pharmaceuticals. The methods use chloramine-T (CAT) and two dyes, methylene blue and rhodamine-B, as reagents and are based on adding of a known excess of CAT to ZDV in hydrochloric acid medium followed by determination of residual oxidant by reacting with a fixed amount of either methylene blue and measuring the absorbance at 665 nm (Method A) or rhodamine B and measuring the absorbance at 555 nm (Method B). In both methods, the amount of CAT reacted corresponds to the amount of ZDV. The absorbance measured is found to increase linearly with concentration of ZDV. Under the optimum conditions, ZDV could be assayed in the concentration range 1.25-15.0 and 0.25-3.0 μg ML-1by method A and method B, respectively. The apparent molar absorptivities are calculated to be 7.7x103and 5.6x104L mol-1cm-1for method A and method B, respectively, and the corresponding Sandell sensitivity values are 0.035 and 0.005 μg cm-2. The limits of detection and quantification are reported for both methods. Intra-day and inter-day precision and accuracy of the developed methods were evaluated as per the current ICH guidelines. The proposed methods can be readily utilized for bulk drug and in pharmaceutical formulations.


2018 ◽  
Vol 35 (1) ◽  
pp. 55
Author(s):  
N. Rajendraprasad ◽  
K. Basavaiah ◽  
K. B. Vinay

Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer’s law was obeyed in the concentration range of 1.5-15 μg mL-1 and 0.5-5.0 μg mL-1 for method A and method B, respectively, and the  = corresponding molar absorptivity values are 1.6932 x 104 and 3.748 x 104L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 μg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job’s continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.


2011 ◽  
Vol 8 (1) ◽  
pp. 269-275 ◽  
Author(s):  
K. V. V. Satyanarayana ◽  
P. Nageswara Rao

Two simple and sensitive spectrophotometric methods are described for the determination of sumatriptan succinate (STS) in pure and tablets using bromate-bromide as the bromination reagent in acid medium and two dyes as subsidiary reagents. The two methods are based on the bromination of STS by a known excess ofin situgenerated bromine followed by determination of unreacted bromine by reacting with a fixed amount of methyl orange (Method A) or indigo carmine (Method B) and measuring the absorbance at 508 or 610 nm. In both methods, the amount of bromine reacted corresponds to the amount of STS. The experimental conditions for the assay have been optimized. In two methods, the absorbance was found to increase linearly with the concentration of STS at the respective wavelengths. Beer’s law was obeyed over the ranges 0.2-1.6 and 2.0-12.0 μg mL-1for method A and method B respectively and the respective molar absorptivity values were 1.898×105and 2.71×104L mol-1cm-1. The statistical analysis of the methods was validated according to the present ICH guidelines. The proposed methods were applied to the analysis of tablet form of STS and the results tallied well with the label claim.


2018 ◽  
Vol 33 (2) ◽  
pp. 21
Author(s):  
Kanakapura Basavaiah ◽  
Okram Zenita Devi

Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves thereduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer’s law for 0.6-7.5 and 0.5-5.0 μg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 104 and 1.06 X 105 Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039μg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure.


Author(s):  
MONIR Z. SAAD ◽  
ATEF AMER ◽  
KHALED ELGENDY ◽  
BASEM ELGENDY

Objective: Two simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sofosbuvir (SOF) and daclatasvir (DAC) in pure forms and pharmaceutical formulations. Methods: The proposed methods are based on the oxidation of SOF and DAC by a known excess of cerium(IV) ammonium nitrate in sulphuric acid medium followed by determination of unreacted cerium(IV) by adding a fixed amount of indigo carmine (IC) and alizarin red S (ARS) dyes followed by measuring the absorbance at 610 and 360 nm, respectively. The experimental conditions affecting the reaction were studied and optimized. Results: The beer’s law was obeyed in the concentration ranges of 0.2-3.0, 0.2-4.0 for SOF and 0.5-4.5 and 0.5-5.0 μg/ml for DAC using IC and ARS methods, respectively with a correlation coefficient ≥ 0.9991. The calculated molar absorptivity values are 2.354 × 104, 1.933 × 104 for SOF and 1.786 × 104 and 2.015 × 104 L/mol. cm for DAC using IC and ARS methods, respectively u. The limits of detection and quantification are also reported. Intra-day and inter-day precision and accuracy of the methods have been evaluated. Conclusion: The methods were successfully applied to the assay of SOF and DAC in tablets and the results were statistically compared with those of the reference method by applying Student’s t-test and F-test. No interference was observed from the common tablet excipients. The accuracy and reliability of the methods were further ascertained by performing recovery studies using the standard addition method.


2010 ◽  
Vol 7 (4) ◽  
pp. 1507-1513 ◽  
Author(s):  
V. Annapurna ◽  
G. Jyothi ◽  
V. Nagalakshmi ◽  
B. B. V. Sailaja

Simple, accurate and reproducible UV spectrophotometric methods were established for the assay of pyrilamine maleate (PYRA) based on the formation of oxidative coupling and precipitation, charge transfer complexation products. Method A includes the oxidative coupling reaction of PYRA with 3-methyl-2-benzathiazolinone hydrazone (MBTH) in presence of Ce(IV). The formation of oxidative coupling product with 4-amino phenazone (4-AP) in presence of K3Fe(CN)6is incorporated in method B. Precipitation/charge transfer complex formation of the PYRA with tannic acid (TA)/Metol-Cr(VI) in method C were proposed. The optical characteristics such as Beers law limits, molar absorptivity and Sandell’s sensitivity for the methods (A-C) are given. Regression analysis using the method of least squares was made to evaluate the slope (b), intercept (a) and correlation coefficient (r) and standard error of estimation (Se) for each system. Determination of pyrilamine in bulk form and in pharmaceutical formulations were also incorporated.


2008 ◽  
Vol 80 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Kanakapura Basavaiah ◽  
Veeraiah Ramakrishna ◽  
Chikkaswamy Somashekar ◽  
Urdigere R. Anil Kumar

Four sensitive and rapid methods for the determination of stavudine (STV) in bulk drug and in dosage forms were developed and optimized. In titrimetry, aqueous solution of STV was treated with a known excess of bromate-bromide in HCl medium followed by estimation of unreacted bromine by iodometric back titration. Spectrophotometric methods involve the addition of a measured excess of bromate-bromide in HCl medium and subsequent estimation of the residual bromine by reacting with a fixed amount of methyl orange, indigocarmine or thymol blue followed by measurement of absorbance at 520 nm (method A), 610 nm (method B) or 550 nm (method C). In all the methods, the amount of bromate reacted corresponds to the amount of STV. Calculations in titrimetry were based on a 1:0.666 (STV:KBrO3) stoichiometry and the method was found to be applicable over 3.5-10 mg range. A linear increase in absorbance with concentration of STV was observed in the spectrophotometric methods, and the Beer's law was obeyed over the concentration ranges 0.125-1.75, 1-10 and 1-9.0 µg mL-1 STV for method A, method B and method C, respectively. The methods when applied to the determination of STV in tablets and capsules were found to give satisfactory results.


2016 ◽  
Vol 2 (1) ◽  
pp. 09
Author(s):  
Pandurang Tukaram Mane

Simple, fast and reliable spectrophotometric methods were developed for determination of Levocetirizine in bulk and pharmaceutical dosage forms. The solutions of standard and the sample were prepared in Methanol. The quantitative determination of the drug was carried out using the second order Derivative Area under Curve method values measured at 235-243 nm. Calibration graphs constructed at their wavelengths of determination were linear in the concentration range of Levocetirizine using 5-25?g/ml (r=0.9994) for first order Derivative Area under Curve spectrophotometric method. The proposed methods have been extensively validated as per ICH guidelines. There was no significant difference between the performance of the proposed methods regarding the mean values and standard deviations. The developed methods were successfully applied to estimate the amount of Levocetirizine in pharmaceutical formulations.


2008 ◽  
Vol 5 (1) ◽  
pp. 10-15 ◽  
Author(s):  
H. D. Revanasiddappa ◽  
M. A. Veena

Two simple and sensitive spectrophotometric methods (A and B) have been described for the determination of ascorbic acid. Method A is based on the oxidation of ascorbic acid (AA) by known excess of Se(IV) in hydrochloric acid medium and subsequent determination of unreacted Se(IV) by reacting it with iodide in the same acid medium to liberate iodine, which react with starch to form a stable blue coloured iodine-starch complex, which shows maximum absorbance at 590 nm. Method B is based on the oxidation of ascorbic acid (AA) by known excess of Cr(VI) in sulphuric acid medium and the determination of unreacted Cr(VI) with diphenyl carbazide (DPC) under the same acidic medium to produce a stable red-violet coloured species, which shows a maximum absorbance at 550 nm. The reacted oxidants (in methods A and B) correspond to the AA content. The apparent molar absorptivity values are found to be 1.627×104and 1.641×104L mol-1cm-1for methods A and B, respectively. The proposed methods are simple, sensitive and suitable for the routine analysis of AA in pharmaceutical formulations and in real samples.


Sign in / Sign up

Export Citation Format

Share Document