scholarly journals Vane Clocking Effects on Stator Suction Side Boundary Layers in a Multistage Compressor

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Natalie R. Smith ◽  
Nicole L. Key

The stator inlet flow field in a multistage compressor varies in the pitchwise direction due to upstream vane wakes and how those wakes interact with the upstream rotor tip leakage flows. If successive vane rows have the same count, then vane clocking can be used to position the downstream vane in the optimum circumferential position for minimum vane loss. This paper explores vane clocking effects on the suction side vane boundary layer development by measuring the quasi-wall shear stress on the downstream vane at three spanwise locations. Comparisons between the boundary layer transition on Stator 1 and Stator 2 are made to emphasize the impact of rotor-rotor interactions which are not present for Stator 1 and yet contribute significantly to transition on Stator 2. Vane clocking can move the boundary layer transition in the path between the wakes by up to 24% of the suction side length at midspan by altering the influence of the Rotor 1 wakes in the 3/rev modulation from rotor-rotor interactions. The boundary layer near the vane hub and tip experiences earlier transition and separation due to interactions with the secondary flows along the shrouded endwalls. Flow visualization and Stator 2 wakes support the shear stress results.

Author(s):  
V Michelassi

The transonic turbulent compressible flow in channels and turbine linear cascades is computed by using a Navier-Stokes solver. Turbulence effects are simulated by means of the k-ω turbulence model. A realiability constraint is introduced to improve the turbulence model performances and stability in the presence of stagnation points. In both the flow over the bump and the turbine blade, the shock induces a flow separation that affects the boundary layer development. In both cases the proposed model succeeds in predicting the flow separation. For the flow over the turbine blade a simple transition model based on integral parameters is introduced to mimic the effect of the boundary layer transition across the shock wave on the suction side. Relaminarization is also properly predicted on the pressure side, thereby allowing a good description of the boundary layer development and shock pattern.


1990 ◽  
Vol 34 (01) ◽  
pp. 38-47
Author(s):  
R. Latorre ◽  
R. Baubeau

One of the difficulties in hydrofoil model tests is the relatively low Reynolds number of the test piece and the presence of the test section walls. This paper presents the results of systematic calculations of the potential flow field of NA 4412 and NACA 16-012 hydrofoil in a test section with wall-to-chord ratios h/c -1.0. The corresponding boundary-layer calculations using the CERT calculation scheme are presented to show the influence of the nearby walls on shifting the location of the boundary-layer laminar-turbulent separation as well as turbulent separation. By introducing an effective angle of attack, it is possible to obtain close agreement in the calculated and measured suction side pressure distortion as well as the locations of the boundary-layer separation and transition.


2019 ◽  
Vol 64 (3) ◽  
pp. 1-13 ◽  
Author(s):  
A. D. Gardner ◽  
C. B. Merz ◽  
C. C. Wolf

An investigation was performed into the effect of positive and negative sweep angle on the boundary layer transition and dynamic stall behavior of a finite wing. The finite wing had a 6:1 aspect ratio, modern (SPP8) tip shape, and positive twist, moving the maximum load on the wing away from the wind tunnel wall. Experiments were performed with sweep Λ = ±30° and Λ = 0° for static polars and sinusoidal pitching. The positively twisted wing shows a S-shaped boundary layer transition on the pressure side similar to that previously seen for helicopter rotor blades in hover. The transition positions on the suction side of the wing are comparable for the same local angle of attack at all values of the sweep at each of the three pressure sections, and for dynamic pitching motions a hysteresis around the static transition positions is seen. Sweeping the wing led to later stall and higher maximum lift for both static polars and dynamic stall, except for a single case. The negative aerodynamic damping is worse for the swept wing than for the unswept wing, except where the delay of stall led to the flow remaining attached.


Author(s):  
Hongyang Li ◽  
Yun Zheng

For the purpose of researching the effect of surface roughness on boundary layer transition and heat transfer of turbine blade, a roughness modification approach for γ-Reθ transition model was proposed based on an in-house CFD code. Taking surface roughness effect into consideration, No. 5411 working condition of Mark II turbine vane was simulated and the results were analyzed in detail. Main conclusions are as follows: Surface roughness has little effect on heat transfer of laminar boundary layer, while has considerable effect on turbulent boundary layer. Compared with smooth surface, equivalent sand roughness of 100μm increases the temperature for about 28.4K on suction side, reaching an increase of 5%. Under low roughness degree, effect of shock wave dominants on boundary layer transition process on suction side, while above the critical degree, effect of surface roughness could abruptly change the transition point.


1985 ◽  
Vol 107 (1) ◽  
pp. 54-59 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

Heat transfer and boundary layer measurements were derived from flows over a cooled flat plate with various free-stream turbulence intensities (Tu = 1.6–11 percent), favorable pressure gradients (k = νe/ue2•due/dx = 0÷6•10−6) and cooling intensities (Tw/Te = 1.0–0.53). Special interest is directed towards the effects of the dominant parameters, including the influence on laminar to turbulent boundary layer transition. It is shown, that free-stream turbulence and pressure gradients are of primary importance. The increase of heat transfer due to wall cooling can be explained primarily by property variations as transition, and the influence of free-stream parameters are not affected.


Author(s):  
W. J. Solomon

Multiple-element surface hot-film instrumentation has been used to investigate boundary layer development in the 2 stage Low Speed Research Turbine (LSRT). Measurements from instrumentation located along the suction surface of the second stage nozzle at mid-span are presented. These results contrast the unsteady, wake-induced boundary layer transition behaviour for various turbine configurations. The boundary layer development on two new turbine blading configurations with identical design vector diagrams but substantially different loading levels are compared with a previously published result. For the conventional loading (Zweifel coefficient) designs, the boundary layer transition occurred without laminar separation. At reduced solidity, wake-induced transition started upstream of a laminar separation line and an intermittent separation bubble developed between the wake-influenced areas. A turbulence grid was installed upstream of the LSRT turbine inlet to increase the turbulence level from about 1% for clean-inlet to about 5% with the grid. The effect of turbulence on the transition onset location was smaller for the reduced solidity design than the baseline. At the high turbulence level, the amplitude of the streamwise fluctuation of the wake-induced transition onset point was reduced considerably. By clocking the first stage nozzle row relative to the second, the alignment of the wake-street from the first stage nozzle with the suction surface of the second stage nozzle was varied. At particular wake clocking alignments, the periodicity of wake induced transition was almost completely eliminated.


Author(s):  
Axel Heidecke ◽  
Bernd Stoffel

This paper presents the results of a numerical investigation of a 1.5-stage low pressure turbine. The main focus of the numerical work was the prediction of the stator-2 boundary layer development under the influence of the stator stator clocking. The turbine profile used for the examination is a so called high-lift-profile and was designed for a laminar-turbulent transition over a steady separation bubble. The boundary conditions were defined by the 1.5-stage test turbine located at our laboratory, where also the measurement data was derived from. The calculations were conducted with a two-dimensional Navier-Stokes solver using a finite volume discretisation scheme. The higher level turbulence models v′2-f and the LCL-turbulence model, which are capable to predict boundary layer transition were compared with measurement data at midspan.


Sign in / Sign up

Export Citation Format

Share Document