scholarly journals Investigation on Nanocomposite Membrane of Multiwalled Carbon Nanotube Reinforced Polycarbonate Blend for Gas Separation

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ayesha Kausar

Carbon nanotube has been explored as a nanofiller in high performance polymeric membrane for gas separation. In this regard, nanocomposite membrane of polycarbonate (PC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and multiwalled carbon nanotube (MWCNT) was fabricated via phase inversion technique. Poly(ethylene glycol) (PEG) was employed for the compatibilization of the blend system. Two series of PC/PVFHFP/PEG were developed using purified P-MWCNT and acid functional A-MWCNT nanofiller. Scanning and transmission electron micrographs have shown fine nanotube dispersion and wetting by matrix, compared with the purified system. Tensile strength and Young’s modulus of PC/PVFHFP/PEG/MWCNT-A 1–5 were found to be in the range of 63.6–72.5 MPa and 110.6–122.1 MPa, respectively. The nanocomposite revealed 51% increase in Young’s modulus and 28% increase in tensile stress relative to the pristine blend. The A-MWCNT was also effective in enhancing the permselectivity αCO2/N2 (31.2–39.9) of nanocomposite membrane relative to the blend membrane (21.6). The permeability PCO2 of blend was 125.6 barrer; however, the functional series had enhanced PCO2 values ranging from 142.8 to 186.6 barrer. Moreover, A-MWCNT loading improved the gas diffusivity of PC/PVFHFP/PEG/MWCNT-A 1–5; however, filler content did not significantly influence the CO2 and N2 solubility.

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 760
Author(s):  
Badar M. Alruwaili ◽  
Usman Saeed ◽  
Iqbal Ahmad ◽  
Hamad Al-Turaif ◽  
Hani Aboalkhair ◽  
...  

Currently, gas separation (GS) membranes are produced from petrochemical-based polymers, but their lifespan is severely impacting the environment. Therefore, there has recently been growing interest in developing ecofriendly biodegradable polymer-based GS membranes. This study developed a polylactic acid (PLA)/polybutylene succinate (PBS) blend composite membrane for GS using the dry/wet phase inversion technique. The influence of the multiwalled carbon nanotube (MWCNT) concentration in the PLA/PBS blend was studied by investigating tensile properties, porosity, percentage crystallinity, contact angle, and gas permeance. The obtained results demonstrate that the addition of MWCNT enhances the tensile strength, porosity, and percentage crystallinity, whereas it decreases the contact angle. The pure gas permeation was investigated at pressures of 2–4 bar at 25 °C. The gas permeation study revealed that the PLA/PBS blend with 0.5% wt. MWCNT enhanced the gas permeance and selectivity at 4 bar. The gas permeance acquired at 25 °C and 4 bar for PLA/PBS reinforced with MWCNT was highest in hydrogen followed by carbon dioxide, argon, and nitrogen. Additionally, a study of the membrane morphology illustrated the uniform dispersion of MWCNT in the PLA/PBS blend. The investigation concluded that membranes containing MWCNT are capable of separating gases at the molecular level, thereby reducing energy consumption.


2018 ◽  
Vol 6 (6) ◽  
pp. 212-225
Author(s):  
Elias Randjbaran ◽  
Rizal Zahari ◽  
Dayang L. Majid ◽  
Mohamed T. H. Sultan ◽  
Norkhairunnisa Mazlan

Motivation/Background: Current review paper is about the forecast of Young's modulus for carbon nanotubes, from both hypothetical and exploratory angles are introduced.  The disparities between the estimations of Young's modulus announced in the writing are broke down, and distinctive patterns of the outcomes are examined. Explain the importance of the problem investigated in the paper. Include here a statement of the main research question. Method: A whole investigation is performed to feature the obstructions and downsides of the demonstrating methods and crucial presumptions utilized which ought to be defeated in additionally contemplates. Conclusions: The perspectives that ought to be considered all the more precisely in demonstrating carbon nanotube composites are distinguished.


2012 ◽  
Vol 77 ◽  
pp. 82-85
Author(s):  
Yong Jin Ahn ◽  
Joon Young Im ◽  
Yong Sok Seo ◽  
Soon Man Hong

We prepared poly(vinylidene fluoride)/multiwalled carbon nanotube (MWCNT) nanocomposites using electrospinning process and investigated its effect on the polymorphic behavior and electroactive properties. The remanant polarization and piezoelectric response increased with the the amount of MWCNT and piezoelectric -phase crystal. Interfacial interaction between MWCNT and PVDF caused high degree of -phase derived from external stretching.


Sign in / Sign up

Export Citation Format

Share Document