scholarly journals Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Dominik Klumpp ◽  
Milan Misovic ◽  
Kalina Szteyn ◽  
Ekaterina Shumilina ◽  
Justine Rudner ◽  
...  

Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Christophe Nicot

Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Gaomei Chang ◽  
Wenqin Xiao ◽  
Zhijian Xu ◽  
Dandan Yu ◽  
Bo Li ◽  
...  

Pterostilbene is a natural 3,5-dimethoxy analog oftrans-resveratrol that has been reported to have antitumor, antioxidant, and anti-inflammatory effects. T-cell leukemia/lymphoma is one of the more aggressive yet uncommon non-Hodgkin lymphomas. Although there has been increasing research into T-cell leukemia/lymphoma, the molecular mechanisms of the antitumor effects of pterostilbene against this malignancy are still largely unknown. The aim of this study is to confirm the effects of pterostilbene in T-cell leukemia/lymphoma. Jurkat and Hut-78 cells treated with pterostilbene were evaluated for cell proliferation using Cell Counting Kit-8, and apoptosis, cell cycle progression, reactive oxygen species generation, and mitochondrial membrane potential were analyzed using flow cytometry. The level of protein expression was detected by western blot. The results demonstrated that pterostilbene significantly inhibited the growth of T-cell leukemia/lymphoma cell lines in vitro and induced apoptosis in a dose- and time-dependent manner. Moreover, pterostilbene treatment markedly induced S-phase cell cycle arrest, which was accompanied by downregulation of cdc25A, cyclin A2, and CDK2. Pterostilbene also induced the generation of reactive oxygen species and the loss of mitochondrial membrane potential and inhibited ERK1/2 phosphorylation. Taken together, our study demonstrated the potential of pterostilbene to be an effective treatment for T-cell leukemia/lymphoma.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4285-4285
Author(s):  
Yanmin Zhao ◽  
Yun Xu ◽  
Jianping Lan ◽  
Yuanyuan Zhu ◽  
He Huang

Abstract Rapamycin exerts its biological activity by inhibiting the kinase mammalian target of rapamycin (mTOR), which is a key regulator of cell growth and survival in many cell types. Its constitutive activation has been involved in pathogenesis of various cancers; the critical functions of mTOR have led to the development of mTOR inhibitors (MTIs) as novel anticancer agents. Recently, the anticancer effects of rapamycin are presently evaluated in various solid tumors; however, the use of rapamycin in acute lymphoblastic leukemia (ALL) is poorly documented. We try to examine the ability of rapamycin to suppress growth and its mechanism in Human T Cell Leukemia cell line Jurkat, and meanwhile to explore its ability to regulate telomerase. Cell proliferation was assessed after exposure to rapamycin by MTT assay. Apoptotic cells were determined by flow cytometric detection of annexin V binding assay. And cell cycle was monitored by flow cytometric detection of DNA content assay. Proteins important for cell cycle progression and Akt/mTOR signaling cascade were assessed by Western blot. Telomerase activity was quantified by TRAP assay. hTERT mRNA levels were determined by semi-quantitative RT-PCR. Rapamycin significantly inhibited proliferation of Jurkat in a dose and time-dependent manner with IC50 values for 24hr, 48hr, and 72hr were 344nM, 92nM and 16nM. To further determine the mechanism of growth inhibition by rapamycin, we found rapamycin did not increase the amount of cells in annexin V+ fraction 72 hr after treatment, confirming that rapamycin did not promote apoptosis in Jurkat cells. However, G1 phase arrest was induced by rapamycin (10nM) since 16hr after treatment, and ratio of G1 continued to grow as treatment was prolonged to 32hr, which indicated rapamycin inhibited cell cycle progress. By Western blot analysis, we found rapamycin could up-regulate the level of cyclin-dependent kinase inhibitors (CDKIs) of p27Kip1 as well as p21waf1, down-regulate CyclinD3, but had no significantly effect on expression of Cdk4, Cdk6 or CyclinD2, which demonstrated that G1 cell cycle arrest induced by rapamycin in Jurkat cells, was mediated by affecting cyclin D3, P27Kip1and p21waf1. Moreover, we characterized the signaling pathways affected by rapamycin, and found phosphorylation of mTOR downstream cascade targets, sucha as p70S6K and S6 were significantly reduced by rapamycin, but phospho- Akt level was not affected, which in agreement with established models that rapamycin functions downstream of Akt in Akt/mTOR signaling. Interestingly, Activation of telomerase is seen in Jurkat cells and thought to be a critical element in leukemia pathogenesis. Treatment with rapamycin decreased telomerase activity dose-dependently, which was accompanied with down-regulation of the catalytic subunit, telomerase reverse transcriptase (TERT). However, the exact transcription factors, which modulate hTERT gene transcription and are targeted by the mTOR pathway, need to be further identified. Conclusion:Rapamycin displayed potent antileukemic effect in Human T Cell Leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through suppression of telomerase activity, suggesting rapamycin may have potential clinical implications in treatment of some leukemia.


2009 ◽  
Vol 52 (3) ◽  
pp. 191-192 ◽  
Author(s):  
N. Mori ◽  
F. Shirakawa ◽  
S. Murakami ◽  
S. Oda ◽  
S. Eto

Retrovirology ◽  
2011 ◽  
Vol 8 (1) ◽  
pp. 19 ◽  
Author(s):  
Keita Hagiya ◽  
Jun-ichirou Yasunaga ◽  
Yorifumi Satou ◽  
Koichi Ohshima ◽  
Masao Matsuoka

Sign in / Sign up

Export Citation Format

Share Document