scholarly journals An Improved Electrical Switching and Phase-Transition Model for Scanning Probe Phase-Change Memory

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Lei Wang ◽  
Si-Di Gong ◽  
Jing Wen ◽  
Ci Hui Yang

Scanning probe phase-change memory (SPPCM) has been widely considered as one of the most promising candidates for next-generation data storage devices due to its fast switching time, low power consumption, and potential for ultra-high density. Development of a comprehensive model able to accurately describe all the physical processes involved in SPPCM operations is therefore vital to provide researchers with an effective route for device optimization. In this paper, we introduce a pseudo-three-dimensional model to simulate the electrothermal and phase-transition phenomena observed during the SPPCM writing process by simultaneously solving Laplace’s equation to model the electrical process, the classical heat transfer equation, and a rate equation to model phase transitions. The crystalline bit region of a typical probe system and the resulting current-voltage curve obtained from simulations of the writing process showed good agreement with experimental results obtained under an equivalent configuration, demonstrating the validity of the proposed model.

2018 ◽  
Vol 7 (3.11) ◽  
pp. 25
Author(s):  
M S. A.Aziz ◽  
F H. M.Fauzi ◽  
Z Mohamad ◽  
R I. Alip

The phase transition of germanium antimony tellurium (GST) and the temperature of GST were investigated using COMSOL Multiphysic 5.0 software. Silicon carbide was using as a heater layer in the separate heater structure of PCM. These simulations have a different channel of SiC. The temperature of GST and the phase transition of GST can be obtained from the simulation. From the simulation, the 300 nm channel of SiC can change the GST from amorphous to crystalline state at 0.7V with 100 ns pulse width. The 800 nm channel of SiC can change the GST from amorphous to crystalline state at 1.1V with 100 ns pulse width. Results demonstrated that the channel of SIC can affecting the temperature of GST and the GST changes from amorphous state to crystalline state. As the channel of SiC decreased, the temperature of GST was increased and the GST was change to crystalline state quickly.  


2011 ◽  
Vol 98 (24) ◽  
pp. 242106 ◽  
Author(s):  
D. Q. Huang ◽  
X. S. Miao ◽  
Z. Li ◽  
J. J. Sheng ◽  
J. J. Sun ◽  
...  

2014 ◽  
Vol 24 (3) ◽  
pp. 037001 ◽  
Author(s):  
Lei Wang ◽  
David Wright ◽  
Mustafa Aziz ◽  
Jin Ying ◽  
Guo Wei Yang

2013 ◽  
Vol 103 (7) ◽  
pp. 072114 ◽  
Author(s):  
Xilin Zhou ◽  
Liangcai Wu ◽  
Zhitang Song ◽  
Feng Rao ◽  
Kun Ren ◽  
...  

2008 ◽  
Vol 103 (11) ◽  
pp. 111101 ◽  
Author(s):  
A. Redaelli ◽  
A. Pirovano ◽  
A. Benvenuti ◽  
A. L. Lacaita

2003 ◽  
Vol 803 ◽  
Author(s):  
L. P. Shi ◽  
T. C. Chong ◽  
J. M. Li ◽  
H. X. Yang ◽  
J. Q. Mou

ABSTRACTIn this paper, a three-dimensional finite-element modeling is performed for the analyses of Chalcogenide Random Access Memory (C-RAM), a non-rotation nonvolatile phase change memory cell. The thermal effect generated by an incident electric pulse was mainly discussed. Thermal performances of the cell as a result of electrical and geometrical variations were quantified. Current density distribution, temperature profiles, temperature history, heating rate, cooling rate, and heat flow characteristics were obtained and analyzed. The study is useful for the failure analysis of the C-RAM.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2082
Author(s):  
Mario Behrens ◽  
Andriy Lotnyk ◽  
Hagen Bryja ◽  
Jürgen W. Gerlach ◽  
Bernd Rauschenbach

Ge-Sb-Te-based phase change memory alloys have recently attracted a lot of attention due to their promising applications in the fields of photonics, non-volatile data storage, and neuromorphic computing. Of particular interest is the understanding of the structural changes and underlying mechanisms induced by short optical pulses. This work reports on structural changes induced by single nanosecond UV laser pulses in amorphous and epitaxial Ge2Sb2Te5 (GST) thin films. The phase changes within the thin films are studied by a combined approach using X-ray diffraction and transmission electron microscopy. The results reveal different phase transitions such as crystalline-to-amorphous phase changes, interface assisted crystallization of the cubic GST phase and structural transformations within crystalline phases. In particular, it is found that crystalline interfaces serve as crystallization templates for epitaxial formation of metastable cubic GST phase upon phase transitions. By varying the laser fluence, GST thin films consisting of multiple phases and different amorphous to crystalline volume ratios can be achieved in this approach, offering a possibility of multilevel data storage and realization of memory devices with very low resistance drift. In addition, this work demonstrates amorphization and crystallization of GST thin films by using only one UV laser with one single pulse duration and one wavelength. Overall, the presented results offer new perspectives on switching pathways in Ge-Sb-Te-based materials and show the potential of epitaxial Ge-Sb-Te thin films for applications in advanced phase change memory concepts.


Sign in / Sign up

Export Citation Format

Share Document