scholarly journals A “Tuned” Mask Learnt Approach Based on Gravitational Search Algorithm

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Youchuan Wan ◽  
Mingwei Wang ◽  
Zhiwei Ye ◽  
Xudong Lai

Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using “Tuned” mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA) and particle swarm optimization (PSO) easily fall into the local optimum. A novel approach for texture image classification exemplified with recognition of residential area is detailed in the paper. In the proposed approach, “Tuned” mask is viewed as a constrained optimization problem and the optimal “Tuned” mask is acquired by maximizing the texture energy via a newly proposed gravitational search algorithm (GSA). The optimal “Tuned” mask is achieved through the convergence of GSA. The proposed approach has been, respectively, tested on some public texture and remote sensing images. The results are then compared with that of GA, PSO, honey-bee mating optimization (HBMO), and artificial immune algorithm (AIA). Moreover, feature extracted by Gabor wavelet is also utilized to make a further comparison. Experimental results show that the proposed method is robust and adaptive and exhibits better performance than other methods involved in the paper in terms of fitness value and classification accuracy.

2017 ◽  
Vol 14 (06) ◽  
pp. 1750070 ◽  
Author(s):  
Ali Haeri ◽  
Mohammad Javad Fadaee

In the present study, Gravitational Search Algorithm (GSA) is combined with Finite Element Method (FEM) for optimizing laminated composites vibration behavior. The fiber orientation angle of layers is considered as design variable. The 8-layerd and 12-layerd plates with both of square and rectangular shapes are investigated. Twenty distinct boundary conditions and [Formula: see text] of fiber angle increment are considered. The results of the proposed method are in good agreement with reference methods, and in some cases the GSA-FEM is more efficient. Moreover, the simple structure of GSA and its exploration and exploitation features avoids trapping in a local optimum.


Author(s):  
Rathika Natarajan ◽  
Abolfazl Mehbodniya ◽  
Kantilal Pitambar Rane ◽  
Sonika Jindal ◽  
Mohammed Faez Hasan ◽  
...  

Online social media has made the process of disseminating news so quick that people have shifted their way of accessing news from traditional journalism and press to online social media sources. The rapid rotation of news on social media makes it challenging to evaluate its reliability. Fake news not only erodes public trust but also subverts their opinions. An intelligent automated system is required to detect fake news as there is a tenuous difference between fake and real news. This paper proposes an intelligent gravitational search random forest (IGSRF) algorithm to be employed to detect fake news. The IGSRF algorithm amalgamates the Intelligent Gravitational Search Algorithm (IGSA) and the Random Forest (RF) algorithm. The IGSA is an improved intelligent variant of the classical gravitational search algorithm (GSA) that adds information about the best and worst gravitational mass agents in order to retain the exploitation ability of agents at later iterations and thus avoid the trapping of the classical GSA in local optimum. In the proposed IGSRF algorithm, all the intelligent mass agents determine the solution by generating decision trees (DT) with a random subset of attributes following the hypothesis of random forest. The mass agents generate the collection of solutions from solution space using random proportional rules. The comprehensive prediction to decide the class of news (fake or real) is determined by all the agents following the attributes of random forest. The performance of the proposed algorithm is determined for the FakeNewsNet dataset, which has sub-categories of BuzzFeed and PolitiFact news categories. To analyze the effectiveness of the proposed algorithm, the results are also evaluated with decision tree and random forest algorithms. The proposed IGSRF algorithm has attained superlative results compared to the DT, RF and state-of-the-art techniques.


2021 ◽  
Vol 13 (21) ◽  
pp. 4351
Author(s):  
Kowsalya Thiagarajan ◽  
Mukunthan Manapakkam Anandan ◽  
Andrzej Stateczny ◽  
Parameshachari Bidare Divakarachari ◽  
Hemalatha Kivudujogappa Lingappa

Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification of satellite images. The HFEL uses three different types of Convolutional Neural Networks (CNN), namely AlexNet, LeNet-5 and a residual network (ResNet), to extract the appropriate features from images of the hierarchical framework. Additionally, the optimal features from the feature set are extracted using the Correlation Coefficient-Based Gravitational Search Algorithm (CCGSA). Further, the Multi Support Vector Machine (MSVM) is used to classify the satellite images by extracted features from the fully connected layers of the CNN and selected features of the CCGSA. Hence, the combination of HFEL and CCGSA is used to obtain the precise classification over different datasets such as the SAT-4, SAT-6 and Eurosat datasets. The performance of the proposed HFEL–CCGSA is analyzed in terms of accuracy, precision and recall. The experimental results show that the HFEL–CCGSA method provides effective classification over the satellite images. The classification accuracy of the HFEL–CCGSA method is 99.99%, which is high when compared to AlexNet, LeNet-5 and ResNet.


2016 ◽  
Vol 3 (4) ◽  
pp. 1-11
Author(s):  
M. Lakshmikantha Reddy ◽  
◽  
M. Ramprasad Reddy ◽  
V.C. Veera Reddy ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document