Intelligent gravitational search random forest algorithm for fake news detection

Author(s):  
Rathika Natarajan ◽  
Abolfazl Mehbodniya ◽  
Kantilal Pitambar Rane ◽  
Sonika Jindal ◽  
Mohammed Faez Hasan ◽  
...  

Online social media has made the process of disseminating news so quick that people have shifted their way of accessing news from traditional journalism and press to online social media sources. The rapid rotation of news on social media makes it challenging to evaluate its reliability. Fake news not only erodes public trust but also subverts their opinions. An intelligent automated system is required to detect fake news as there is a tenuous difference between fake and real news. This paper proposes an intelligent gravitational search random forest (IGSRF) algorithm to be employed to detect fake news. The IGSRF algorithm amalgamates the Intelligent Gravitational Search Algorithm (IGSA) and the Random Forest (RF) algorithm. The IGSA is an improved intelligent variant of the classical gravitational search algorithm (GSA) that adds information about the best and worst gravitational mass agents in order to retain the exploitation ability of agents at later iterations and thus avoid the trapping of the classical GSA in local optimum. In the proposed IGSRF algorithm, all the intelligent mass agents determine the solution by generating decision trees (DT) with a random subset of attributes following the hypothesis of random forest. The mass agents generate the collection of solutions from solution space using random proportional rules. The comprehensive prediction to decide the class of news (fake or real) is determined by all the agents following the attributes of random forest. The performance of the proposed algorithm is determined for the FakeNewsNet dataset, which has sub-categories of BuzzFeed and PolitiFact news categories. To analyze the effectiveness of the proposed algorithm, the results are also evaluated with decision tree and random forest algorithms. The proposed IGSRF algorithm has attained superlative results compared to the DT, RF and state-of-the-art techniques.

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Youchuan Wan ◽  
Mingwei Wang ◽  
Zhiwei Ye ◽  
Xudong Lai

Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using “Tuned” mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA) and particle swarm optimization (PSO) easily fall into the local optimum. A novel approach for texture image classification exemplified with recognition of residential area is detailed in the paper. In the proposed approach, “Tuned” mask is viewed as a constrained optimization problem and the optimal “Tuned” mask is acquired by maximizing the texture energy via a newly proposed gravitational search algorithm (GSA). The optimal “Tuned” mask is achieved through the convergence of GSA. The proposed approach has been, respectively, tested on some public texture and remote sensing images. The results are then compared with that of GA, PSO, honey-bee mating optimization (HBMO), and artificial immune algorithm (AIA). Moreover, feature extracted by Gabor wavelet is also utilized to make a further comparison. Experimental results show that the proposed method is robust and adaptive and exhibits better performance than other methods involved in the paper in terms of fitness value and classification accuracy.


Author(s):  
Kenekayoro Patrick

Meta-heuristic techniques are important as they are used to find solutions to computationally intractable problems. Simplistic methods such as exhaustive search become computationally expensive and unreliable as the solution space for search algorithms increase. As no method is guaranteed to perform better than all others in all classes of optimization search problems, there is a need to constantly find new and/or adapt old search algorithms. This research proposes an Infrasonic Search Algorithm, inspired from the Gravitational Search Algorithm and the mating behaviour in peafowls. The Infrasonic Search Algorithm identified competitive solutions to 23 benchmark unimodal and multimodal test functions compared to the Genetic Algorithm, Particle Swarm Optimization Algorithm and the Gravitational Search Algorithm.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750070 ◽  
Author(s):  
Ali Haeri ◽  
Mohammad Javad Fadaee

In the present study, Gravitational Search Algorithm (GSA) is combined with Finite Element Method (FEM) for optimizing laminated composites vibration behavior. The fiber orientation angle of layers is considered as design variable. The 8-layerd and 12-layerd plates with both of square and rectangular shapes are investigated. Twenty distinct boundary conditions and [Formula: see text] of fiber angle increment are considered. The results of the proposed method are in good agreement with reference methods, and in some cases the GSA-FEM is more efficient. Moreover, the simple structure of GSA and its exploration and exploitation features avoids trapping in a local optimum.


Author(s):  
Prof. B. J. Deokate

Abstract: Fake news detection is an interesting topic for computer scientists and social science. The recent growth of the online social media fake news has great impact to the society. There is a huge information from disparate sources among various users around the world. Social media platforms like Facebook, WhatsApp and Twitter are one of the most popular applications that are able to deliver appealing data in timely manner. Developing a technique that can detect fake news from these platforms is becoming a necessary and challenging task. This project proposes a machine learning method which can identify the credibility of an article that will be extracted from the Uniform Resource Locator (URL) entered by the user on the front end of a website. The project uses the five widely used machine learning methods: Long Short Term Memory (LSTM), Random Forest (random tree), Random Forest (decision tree), Decision Tree and Neural Network to give a response telling the user about the credibility of that news. Our initial definition of reliable and unreliable will rely on the human-curated data http://opensources.co. OpenSources.co has a list of about 20 credible news websites and a list of over 700 fake news websites. The proposed model is working well and defining the correctness of results upto 87.45% of accuracy. Keywords: Data Pre-processing, Fake news datasets, ML algorithms, Prediction.


2016 ◽  
Vol 3 (4) ◽  
pp. 1-11
Author(s):  
M. Lakshmikantha Reddy ◽  
◽  
M. Ramprasad Reddy ◽  
V.C. Veera Reddy ◽  
◽  
...  

Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


Sign in / Sign up

Export Citation Format

Share Document