scholarly journals Recommending Ads from Trustworthy Relationships in Pervasive Environments

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Francisco Martinez-Pabon ◽  
Juan Camilo Ospina-Quintero ◽  
Gustavo Ramirez-Gonzalez ◽  
Mario Munoz-Organero

The use of pervasive computing technologies for advertising purposes is an interesting emergent field for large, medium, and small companies. Although recommender systems have been a traditional solution to decrease users’ cognitive effort to find good and personalized items, the classic collaborative filtering needs to include contextual information to be more effective. The inclusion of users’ social context information in the recommendation algorithm, specifically trust in other users, may be a mechanism for obtaining ads’ influence from other users in their closest social circle. However, there is no consensus about the variables to use during the trust inference process, and its integration into a classic collaborative filtering recommender system deserves a deeper research. On the other hand, the pervasive advertising domain demands a recommender system evaluation from a novelty/precision perspective. The improvement of the precision/novelty balance is not only a matter related to the recommendation algorithm itself but also a better recommendations’ display strategy. In this paper, we propose a novel approach for a collaborative filtering recommender system based on trust, which was tested throughout a digital signage prototype using a multiscreen scheme for recommendations delivery to evaluate our proposal using a novelty/precision approach.

2020 ◽  
Vol 14 ◽  
Author(s):  
Amreen Ahmad ◽  
Tanvir Ahmad ◽  
Ishita Tripathi

: The immense growth of information has led to the wide usage of recommender systems for retrieving relevant information. One of the widely used methods for recommendation is collaborative filtering. However, such methods suffer from two problems, scalability and sparsity. In the proposed research, the two issues of collaborative filtering are addressed and a cluster-based recommender system is proposed. For the identification of potential clusters from the underlying network, Shapley value concept is used, which divides users into different clusters. After that, the recommendation algorithm is performed in every respective cluster. The proposed system recommends an item to a specific user based on the ratings of the item’s different attributes. Thus, it reduces the running time of the overall algorithm, since it avoids the overhead of computation involved when the algorithm is executed over the entire dataset. Besides, the security of the recommender system is one of the major concerns nowadays. Attackers can come in the form of ordinary users and introduce bias in the system to force the system function that is advantageous for them. In this paper, we identify different attack models that could hamper the security of the proposed cluster-based recommender system. The efficiency of the proposed research is validated by conducting experiments on student dataset.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hui Ning ◽  
Qian Li

Collaborative filtering technology is currently the most successful and widely used technology in the recommendation system. It has achieved rapid development in theoretical research and practice. It selects information and similarity relationships based on the user’s history and collects others that are the same as the user’s hobbies. User’s evaluation information is to generate recommendations. The main research is the inadequate combination of context information and the mining of new points of interest in the context-aware recommendation process. On the basis of traditional recommendation technology, in view of the characteristics of the context information in music recommendation, a personalized and personalized music based on popularity prediction is proposed. Recommended algorithm is MRAPP (Media Recommendation Algorithm based on Popularity Prediction). The algorithm first analyzes the user’s contextual information under music recommendation and classifies and models the contextual information. The traditional content-based recommendation technology CB calculates the recommendation results and then, for the problem that content-based recommendation technology cannot recommend new points of interest for users, introduces the concept of popularity. First, we use the memory and forget function to reduce the score and then consider user attributes and product attributes to calculate similarity; secondly, we use logistic regression to train feature weights; finally, appropriate weights are used to combine user-based and item-based collaborative filtering recommendation results. Based on the above improvements, the improved collaborative filtering recommendation algorithm in this paper has greatly improved the prediction accuracy. Through theoretical proof and simulation experiments, the effectiveness of the MRAPP algorithm is demonstrated.


2013 ◽  
Vol 411-414 ◽  
pp. 2223-2228
Author(s):  
Dong Liang Su ◽  
Zhi Ming Cui ◽  
Jian Wu ◽  
Peng Peng Zhao

Nowadays personalized recommendation algorithm of e-commerce can hardly meet the needs of users as an ever-increasing number of users and items in personalized recommender system has brought about sparsity of user-item rating matrix and the emergence of more and more new users has threatened recommender system quality. This paper puts forward a pre-filled collaborative filtering recommendation algorithm based on matrix factorization, pre-filling user-item matrixes by matrix factorization and building nearest-neighbor models according to new user profile information, thus mitigating the influence of matrix sparsity and new users and improving the accuracy of recommender system. The experimental results suggest that this algorithm is more precise and effective than the traditional one under the condition of extremely sparse user-item rating matrix.


2010 ◽  
Vol 21 (10) ◽  
pp. 1217-1227 ◽  
Author(s):  
WEI ZENG ◽  
MING-SHENG SHANG ◽  
QIAN-MING ZHANG ◽  
LINYUAN LÜ ◽  
TAO ZHOU

Recommender systems are becoming a popular and important set of personalization techniques that assist individual users with navigating through the rapidly growing amount of information. A good recommender system should be able to not only find out the objects preferred by users, but also help users in discovering their personalized tastes. The former corresponds to high accuracy of the recommendation, while the latter to high diversity. A big challenge is to design an algorithm that provides both highly accurate and diverse recommendation. Traditional recommendation algorithms only take into account the contributions of similar users, thus, they tend to recommend popular items for users ignoring the diversity of recommendations. In this paper, we propose a recommendation algorithm by considering both the effects of similar and dissimilar users under the framework of collaborative filtering. Extensive analyses on three datasets, namely MovieLens, Netflix and Amazon, show that our method performs much better than the standard collaborative filtering algorithm for both accuracy and diversity.


2018 ◽  
Vol 7 (2) ◽  
pp. 108-119
Author(s):  
Waldemar Karwowski ◽  
Marian Rusek ◽  
Joanna Sosnowska

The paper discusses the need for recommendations and the basic recommendation systems and algorithms. In the second part the design and implementation of the recommender system for online art gallery (photos, drawings, and paintings) is presented. The designed customized recommendation algorithm is based on collaborative filtering technique using the similarity between objects, improved by information from user profile. At the end conclusions of performed algorithm are formulated.


2013 ◽  
Vol 846-847 ◽  
pp. 1736-1739
Author(s):  
Feng Ge

With the speedy development of network, information technology has provided an unmatched amount of information resources. It has also led to the problem of information overload. However, people experiences and knowledge often do not enough to process the vast amount of usable information. Thus, approaches to help find resources of interest have attracted much attention from researchers. And recommender systems have arrived to solve this problem. Recommender system plays an important role mainly in an electronic commerce environment as a new marketing strategy. Although a varied of recommendation techniques has been developed recently, collaborative filtering has been known to be the most successful recommendation techniques and has been used in a number of different applications. But traditional collaborative filtering recommendation algorithm has the problem of sparsity. Aiming at the problem of data sparsity for personalized filtering systems, a collaborative filtering recommendation algorithm based on user rating similarity and user attribute similarity is given. This approach not only considers the user item rating information, but also takes into account the user attribute.


2012 ◽  
Vol 605-607 ◽  
pp. 2430-2433
Author(s):  
Wei Bin Deng ◽  
Jin Liu

Traditional collaborative filtering algorithms are facing severe challenges of sparse user rating and real-time recommendation. To solve the problems, the category structure of merchandise is analyzed deeply and a collaborative filtering recommendation algorithm based on item category is proposed. A smooth filling technique is used for rating matrix with user preferences and all users rating on the item to solve the sparse problem. A user has different interests on different category. For every item, the nearest neighbors are searched within the category of the item. Not only is the search space of the users’ neighbors reduced greatly, but also search speed and accuracy are promoted. The experimental results show that the method can efficiently improve the recommendation scalability and accuracy of the recommender system.


Sign in / Sign up

Export Citation Format

Share Document