scholarly journals On the UV Dimensions of Loop Quantum Gravity

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Michele Ronco

Planck-scale dynamical dimensional reduction is attracting more and more interest in the quantum-gravity literature since it seems to be a model independent effect. However, different studies base their results on different concepts of space-time dimensionality. Most of them rely on thespectraldimension; others refer to theHausdorffdimension; and, very recently, thethermaldimension has also been introduced. We here show that all these distinct definitions of dimension give the same outcome in the case of the effective regime of Loop Quantum Gravity (LQG). This is achieved by deriving a modified dispersion relation from the hypersurface-deformation algebra with quantum corrections. Moreover, we also observe that the number of UV dimensions can be used to constrain the ambiguities in the choice of these LQG-based modifications of the Dirac space-time algebra. In this regard, introducing thepolymerizationof connections, that is,K→sin⁡δK/δ, we find that the leading quantum correction givesdUV=2.5. This result may indicate that the running to the expected value of two dimensions is ongoing, but it has not been completed yet. FindingdUVat ultrashort distances would require going beyond the effective approach we here present.

2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


2003 ◽  
Vol 12 (09) ◽  
pp. 1633-1639 ◽  
Author(s):  
GIOVANNI AMELINO-CAMELIA

Over the last few years the study of possible Planck-scale departures from classical Lorentz symmetry has been one of the most active areas of quantum-gravity research. We now have a satisfactory description of the fate of Lorentz symmetry in the most popular noncommutative spacetimes and several studies have been devoted to the fate of Lorentz symmetry in loop quantum gravity. Remarkably there are planned experiments with enough sensitivity to reveal these quantum-spacetime effects, if their magnitude is only linearly suppressed by the Planck length. Unfortunately, in some quantum-gravity scenarios even the strongest quantum-spacetime effects are suppressed by at least two powers of the Planck length, and many authors have argued that it would be impossible to test these quadratically-suppressed effects. I here observe that advanced cosmic-ray observatories and neutrino observatories can provide the first elements of an experimental programme testing the possibility of departures from Lorentz symmetry that are quadratically Planck-length suppressed.


Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Shovon Biswas ◽  
Mir Mehedi Faruk

Planck scale inspired theories which are also often accompanied with maximum energy and/or momentum scale predict deformed dispersion relations compared to ordinary special relativity and quantum mechanics. In this paper, we resort to the methods of statistical mechanics in order to determine the effects of a deformed dispersion relation along with an upper bound in the partition function that maximum energy and/or momentum scale can have on the thermodynamics of photon gas. We also analyzed two distinct quantum gravity models in this paper.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 525-531 ◽  
Author(s):  
THIBAULT DAMOUR ◽  
HERMANN NICOLAI

Recent work has revealed intriguing connections between a Belinsky–Khalatnikov–Lifshitz-type analysis of spacelike singularities in general relativity and certain infinite-dimensional Lie algebras, particularly the "maximally extended" hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(–time) at the Planck scale, and hence — via an effective "de-emergence" of space near the singularity — to a novel mechanism for achieving background independence in quantum gravity.


Author(s):  
Andreas G. A. Pithis ◽  
Hans-Christian Ruiz Euler

In this work we investigate the role played by large diffeomorphisms of quantum isolated horizons for the statistics of Loop Quantum Gravity black holes by means of their relation to the braid group. The mutual exchange of quantum entities in two dimensions is achieved by the braid group, rendering the statistics anyonic. With this we argue that the quantum isolated horizon model of LQG based on SU(2)_k-Chern-Simons theory explicitly exhibits non-abelian anyonic statistics, since the quantum gravitational degrees of freedom of the horizon can be seen as flux-charge composites. In this way a connection to the theory behind the fractional quantum Hall effect and that of topological quantum computation is established, where non-abelian anyons play a significant role.


Author(s):  
Jakub Mielczarek

The article addresses the possibility of implementing spin network states, used in the loop quantum gravity approach to Planck scale physics on an adiabatic quantum computer. The discussion focuses on applying currently available technologies and analyzes a concrete example of a D-Wave machine. It is introduced a class of simple spin network states which can be implemented on the Chimera graph architecture of the D-Wave quantum processor. However, extension beyond the currently available quantum processor topologies is required to simulate more sophisticated spin network states. This may inspire new generations of adiabatic quantum computers. A possibility of simulating loop quantum gravity is discussed, and a method of solving a graph non-changing scalar (Hamiltonian) constraint with the use of adiabatic quantum computations is proposed. The presented results establish a basis for the future simulations of Planck scale physics, specifically quantum cosmological configurations, on quantum annealers.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 251
Author(s):  
Martin Bojowald

Background independence is often emphasized as an important property of a quantum theory of gravity that takes seriously the geometrical nature of general relativity. In a background-independent formulation, quantum gravity should determine not only the dynamics of space–time but also its geometry, which may have equally important implications for claims of potential physical observations. One of the leading candidates for background-independent quantum gravity is loop quantum gravity. By combining and interpreting several recent results, it is shown here how the canonical nature of this theory makes it possible to perform a complete space–time analysis in various models that have been proposed in this setting. In spite of the background-independent starting point, all these models turned out to be non-geometrical and even inconsistent to varying degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome leads to several implications for potential observations as well as lessons for other background-independent approaches.


2020 ◽  
Vol 33 (1) ◽  
pp. 46-78 ◽  
Author(s):  
Espen Gaarder Haug

For about hundred years, modern physics has not been able to build a bridge between quantum mechanics (QM) and gravity. However, a solution may be found here. We present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision-space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision-space-time, which is equivalent to mass and energy. The beauty of our theory is that most of the main equations that currently exist in physics are, in general, not changed in terms of predictions and what we could call structural form, except at the Planck scale. The Planck scale is directly linked to gravity, which has obviously already been detected, and gravity is actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions, except at the Planck scale, and this new formulation gives us a unified theory. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This is not attained at a cost, but rather a reflection of the benefit in having gravity and QM unified under the same theory.


Author(s):  
Rodolfo Gambini ◽  
Javier Olmedo ◽  
Jorge Pullin

We continue our investigation of an improved quantization scheme for spherically symmetric loop quantum gravity. We find that in the region where the black hole singularity appears in the classical theory, the quantum theory contains semi-classical states that approximate general relativity coupled to an effective anisotropic fluid. The singularity is eliminated and the space-time can be continued into a white hole space-time. This is similar to previously considered scenarios based on a loop quantum gravity quantization.


Sign in / Sign up

Export Citation Format

Share Document