scholarly journals Loop Quantum Gravity meets Topological Phases of Matter at the Black Hole horizon

Author(s):  
Andreas G. A. Pithis ◽  
Hans-Christian Ruiz Euler

In this work we investigate the role played by large diffeomorphisms of quantum isolated horizons for the statistics of Loop Quantum Gravity black holes by means of their relation to the braid group. The mutual exchange of quantum entities in two dimensions is achieved by the braid group, rendering the statistics anyonic. With this we argue that the quantum isolated horizon model of LQG based on SU(2)_k-Chern-Simons theory explicitly exhibits non-abelian anyonic statistics, since the quantum gravitational degrees of freedom of the horizon can be seen as flux-charge composites. In this way a connection to the theory behind the fractional quantum Hall effect and that of topological quantum computation is established, where non-abelian anyons play a significant role.

2016 ◽  
Vol 113 (44) ◽  
pp. 12386-12390 ◽  
Author(s):  
Hailong Fu ◽  
Pengjie Wang ◽  
Pujia Shan ◽  
Lin Xiong ◽  
Loren N. Pfeiffer ◽  
...  

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current–tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.


2007 ◽  
Vol 21 (08n09) ◽  
pp. 1372-1378 ◽  
Author(s):  
N. E. BONESTEEL ◽  
L. HORMOZI ◽  
G. ZIKOS ◽  
S. H. SIMON

In topological quantum computation quantum information is stored in exotic states of matter which are intrinsically protected from decoherence, and quantum operations are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum operations depend only on the topology of the braids formed by these world-lines. We describe recent work showing how to find braids which can be used to perform arbitrary quantum computations using a specific kind of quasiparticle (those described by the so-called Fibonacci anyon model) which are thought to exist in the experimentally observed ν = 12/5 fractional quantum Hall state.


2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2015 ◽  
Vol 24 (10) ◽  
pp. 1550074 ◽  
Author(s):  
L. Mullick ◽  
P. Bandyopadhyay

We have considered here the emergence of diffeomorphism symmetry in quantum gravity in the framework of the quantization of a fermion. It is pointed out that a closed loop having the holonomy associated with the SU(2) gauge group is realized from the rotation of the direction vector associated with the quantization of a fermion depicting spin degrees of freedom which appear as SU(2) gauge bundle. During the formation of a loop, a noncyclic path with open ends can be mapped onto a closed loop when the holonomy involves q-deformed gauge group SUq(2). This gives rise to q-deformed diffeomorphism and helps to realize diffeomorphism invariance in quantum gravity through a sequence of q-deformed diffeomorphism in the limit q = 1. We can consider adiabatic iteration such that the quasispin associated with the quantum group SUq(2) gradually evolves as the time dependent deformation parameter q changes and in the limit q = 1, we achieve the standard spin. This essentially depicts the evolution of spin network as the loop is being formed and links fermionic degrees of freedom with loop quantum gravity.


2021 ◽  
Vol 3 (3) ◽  
pp. 576-591
Author(s):  
Paola Zizzi

In this paper, we demonstrate, in the context of Loop Quantum Gravity, the Quantum Holographic Principle, according to which the area of the boundary surface enclosing a region of space encodes a qubit per Planck unit. To this aim, we introduce fermion fields in the bulk, whose boundary surface is the two-dimensional sphere. The doubling of the fermionic degrees of freedom and the use of the Bogolyubov transformations lead to pairs of the spin network’s edges piercing the boundary surface with double punctures, giving rise to pixels of area encoding a qubit. The proof is also valid in the case of a fuzzy sphere.


2011 ◽  
Vol 20 (01) ◽  
pp. 91-102
Author(s):  
H. A. DYE ◽  
LOUIS H. KAUFFMAN

We introduce a recoupling theory for virtual braided trees. This recoupling theory can be utilized to incorporate swap gates into anyonic models of quantum computation.


Author(s):  
Paola Zizzi

We demonstrate, in the context of Loop Quantum Gravity, the Quantum Holographic Principle, according to which the area of the boundary surface enclosing a region of space encodes a qubit per Planck unit. To this aim, we introduce fermion fields in the bulk, whose boundary surface is the two-dimensional sphere. The doubling of the fermionic degrees of freedom and the use of the Bogoliubov transformations lead to pairs of spin network’s edges piercing the boundary surface with double punctures, giving rise to pixels of area encoding a qubit. The proof is also valid in the case of a fuzzy sphere.


Author(s):  
Muxin Han ◽  
Hongguang Liu

Abstract We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1+1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical Hamiltonian ${\bf H}_\Delta$. The holonomy correction in ${\bf H}_\Delta$ is implemented by the $\bar{\mu}$-scheme regularization with a Planckian area scale $\Delta$ (which often chosen as the minimal area gap in Loop Quantum Gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g. $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}\sim 1/{\Delta}^2$. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry ${\rm dS}_2\times S^2$ with Planckian radii $\sim \sqrt{\Delta}$. The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.


Sign in / Sign up

Export Citation Format

Share Document