scholarly journals Two-Dimensional Simulation of Flows in an Open Channel with Groin-Like Structures by iRIC Nays2DH

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Shahjahan Ali ◽  
Md. Milon Hasan ◽  
Masuma Haque

This study presents the results obtained from the numerical simulation on turbulent flows around a single groin for different orientations. Here iRIC Nays2DH, which is based on 2D model, is used to simulate the flows in a straight open channel with groin of 45°, 90°, and 135° angled with the approaching flow. A depth-averaged k-ε model is used as turbulence closure model with finite differential advections as upwind scheme. The numerical results of velocity and bed shear stress profiles are compared with the available experimental data. Good agreements are found between experimental and calculated results. From the simulation, it is observed that the peak of velocity and bed shear stress is maximum at the position of head of groin when lateral distance y/l=1, where l is the groin length. The position of maximum velocity and bed shear stress is found to be shifted towards downstream with increasing y/l. The maximum velocity and bed shear stress for 135° groin are found lower than the other two cases for all the sections of y/l.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1423
Author(s):  
Amir Golpira ◽  
Fengbin Huang ◽  
Abul B.M. Baki

This study experimentally investigated the effect of boulder spacing and boulder submergence ratio on the near-bed shear stress in a single array of boulders in a gravel bed open channel flume. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. Four methods of estimating near-bed shear stress were compared. The results suggested a significant effect of boulder spacing and boulder submergence ratio on the near-bed shear stress estimations and their spatial distributions. It was found that at unsubmerged condition, the turbulent kinetic energy (TKE) and modified TKE methods can be used interchangeably to estimate the near-bed shear stress. At both submerged and unsubmerged conditions, the Reynolds method performed differently from the other point-methods. Moreover, a quadrant analysis was performed to examine the turbulent events and their contribution to the near-bed Reynolds shear stress with the effect of boulder spacing. Generally, the burst events (ejections and sweeps) were reduced in the presence of boulders. This study may improve the understanding of the effect of the boulder spacing and boulder submergence ratio on the near-bed shear stress estimations of stream restoration practices.


2017 ◽  
Vol 831 ◽  
pp. 1-40 ◽  
Author(s):  
Wen-Yi Chang ◽  
George Constantinescu ◽  
Whey Fone Tsai

The flow and the turbulence structure generated by a circular porous cylinder of diameter $D$ containing solid cylinders of diameter $d$ placed in an open channel of depth $h\approx 0.5D$ are investigated using eddy-resolving simulations which resolve the wakes past the individual solid cylinders in the array. The solid cylinders extend from the bed through the water surface. This geometrical set-up is directly relevant to understand the physics of flow past an emerged patch of aquatic vegetation developing in a river channel or over its floodplain. Simulations are conducted with different solid volume fractions (SVFs) of the porous cylinder ($0.034<\text{SVF}<0.23$), relative diameters of the solid cylinders ($d/D=0.03$ and 0.06) and with flat and equilibrium scour bathymetry corresponding to the start and respectively the end of the erosion and deposition process. Comparison with the limiting case of a solid cylinder ($\text{SVF}=1$) is also discussed. The bed shear stress distributions and the turbulent flow fields are used to explain the sediment erosion mechanisms inside and around the porous cylinder. Simulations of the flat-bed cases reveal that for sufficiently large SVF values ($\text{SVF}>0.2$), necklace vortices form around the upstream face of the cylinder, the downflow penetrates partially inside the porous cylinder and a region of strong flow acceleration forms on the sides of the porous cylinder. These flow features are used to explain the development of scour around high-SVF porous cylinders. The effects of the SVF and $d/D$ on generating ‘corridors’ of strong flow acceleration in between the solid cylinders and energetic eddies in the wake of these cylinders are discussed, as these flow features control the amplification of the bed shear stress inside the porous cylinder. Simulations results are also used to quantify the time-averaged drag forces on the cylinders in the array, to identify the regions where these forces are comparable to those induced on an isolated cylinder and the percentage of cylinders in the array subject to relatively large mean drag forces. A logarithmic decrease of the mean time-averaged streamwise drag coefficient of the solid cylinders, $\overline{C}_{d}$, with increasing non-dimensional frontal area per unit volume of the porous cylinder, $aD$, is observed. Behind the cylinder, the eddies shed in the separated shear layers (SSLs) of the porous cylinder, and, for sufficiently large SVFs, the von Kármán wake billows are the main coherent structures responsible for the amplification of the bed shear stress and sediment entrainment. This paper also analyses the vertical non-uniformity of the mean flow and turbulent kinetic energy, and discusses how the SVF and bathymetry affect the spatial extent of the wake region (e.g. length of the SSLs and steady wake, total wake length) and other relevant variables (e.g. strength of the bleeding flow, dominant wake frequencies, turbulence amplification in the near wake). For the relatively shallow flow conditions ($D/h\approx 2.0$) considered, the simulation results show that the antisymmetric (von Kármán) shedding of wake billows behind the porous cylinder is greatly weakened once equilibrium scour conditions are approached. Comparison with data from laboratory experiments and from 3-D and 2-D simulations conducted for long porous cylinders (no bed) is also discussed.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 87 ◽  
Author(s):  
Domenica Mirauda ◽  
Maria Grazia Russo

The evaluation of bed shear stress distribution is fundamental to predicting the transport of sediments and pollutants in rivers and to designing successful stable open channels. Such distribution cannot be determined easily as it depends on the velocity field, the shape of the cross section, and the bed roughness conditions. In recent years, information theory has been proven to be reliable for estimating shear stress along the wetted perimeter of open channels. The entropy models require the knowledge of the shear stress maximum and mean values to calculate the Lagrange multipliers, which are necessary to the resolution of the shear stress probability distribution function. This paper proposes a new formulation which stems from the maximization of the Tsallis entropy and simplifies the calculation of the Lagrange coefficients in order to estimate the bed shear stress distribution in open-channel flows. This formulation introduces a relationship between the dimensionless mean shear stress and the entropic parameter which is based on the ratio between the observed mean and maximum velocity of an open-channel cross section. The validity of the derived expression was tested on a large set of literature laboratory measurements in rectangular cross sections having different bed and sidewall roughness conditions as well as various water discharges and flow depths. A detailed error analysis showed good agreement with the experimental data, which allowed linking the small-scale dynamic processes to the large-scale kinematic ones.


Sign in / Sign up

Export Citation Format

Share Document