scholarly journals A Distributed Tactile Sensor for Intuitive Human-Robot Interfacing

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Andrea Cirillo ◽  
Pasquale Cirillo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

Safety of human-robot physical interaction is enabled not only by suitable robot control strategies but also by suitable sensing technologies. For example, if distributed tactile sensors were available on the robot, they could be used not only to detect unintentional collisions, but also as human-machine interface by enabling a new mode of social interaction with the machine. Starting from their previous works, the authors developed a conformable distributed tactile sensor that can be easily conformed to the different parts of the robot body. Its ability to estimate contact force components and to provide a tactile map with an accurate spatial resolution enables the robot to handle both unintentional collisions in safe human-robot collaboration tasks and intentional touches where the sensor is used as human-machine interface. In this paper, the authors present the characterization of the proposed tactile sensor and they show how it can be also exploited to recognize haptic tactile gestures, by tailoring recognition algorithms, well known in the image processing field, to the case of tactile images. In particular, a set of haptic gestures has been defined to test three recognition algorithms on a group of 20 users. The paper demonstrates how the same sensor originally designed to manage unintentional collisions can be successfully used also as human-machine interface.

Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 79-81
Author(s):  
Takayuki Takahashi

Tactile sensors measure information arising from the sensor's physical interaction with its environment. There are different types, including force/torque, dynamic and thermal. Many devices require sensors to detect contact with the outside world, much like robots. Dr Takayuki Takahashi is a researcher based in the Department of Symbiotic Systems Science, Fukushima University, Japan. He and his team have developed a tactile sensor that can be sprayed over three-dimensional shapes, called the Spray Coated Tactile Sensor (ScoTacS).


2007 ◽  
Vol 1052 ◽  
Author(s):  
Masayuki Sohgawa ◽  
Yu-Ming Huang ◽  
Minoru Noda ◽  
Takeshi Kanashima ◽  
Kaoru Yamashita ◽  
...  

AbstractThe tactile sensors for human support robots which can detect both normal stress and shear stress and have human-friendly surface have been proposed. Micro-cantilevers adequately inclined by Cr deflection control layer were fabricated by the surface micromachining on SOI wafer. The cantilevers were covered with the PDMS elastomer for human-friendly surface. When the stress is added to the surface of elastomer, the deformation of cantilevers along with elastomer is detected as piezoresistive layer in the cantilevers. The piezoresistive response of the cantilever is analyzed by FEM calculation. The response of the fabricated tactile sensor to normal stress and shear stress was measured by output from this resistance. The tactile sensor with PDMS elastomer can detect both normal stress and shear stress. On the other hand, it hardly has sensitivity to shear stress of orthogonal direction to the cantilever. It means that the tactile sensor can distinguish the direction of shear stress. The sensitivity of tactile sensor vary widely with cantilever pattern and relation between direction of cantilever and crystallite orientation of Si. It is suggested that the sensitivity of tactile sensor can be improved by using FEM estimation and selective ion implantation.


1990 ◽  
Author(s):  
B. Bly ◽  
P. J. Price ◽  
S. Park ◽  
S. Tepper ◽  
E. Jackson ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 687
Author(s):  
Jinzhen Dou ◽  
Shanguang Chen ◽  
Zhi Tang ◽  
Chang Xu ◽  
Chengqi Xue

With the development and promotion of driverless technology, researchers are focusing on designing varied types of external interfaces to induce trust in road users towards this new technology. In this paper, we investigated the effectiveness of a multimodal external human–machine interface (eHMI) for driverless vehicles in virtual environment, focusing on a two-way road scenario. Three phases of identifying, decelerating, and parking were taken into account in the driverless vehicles to pedestrian interaction process. Twelve eHMIs are proposed, which consist of three visual features (smile, arrow and none), three audible features (human voice, warning sound and none) and two physical features (yielding and not yielding). We conducted a study to gain a more efficient and safer eHMI for driverless vehicles when they interact with pedestrians. Based on study outcomes, in the case of yielding, the interaction efficiency and pedestrian safety in multimodal eHMI design was satisfactory compared to the single-modal system. The visual modality in the eHMI of driverless vehicles has the greatest impact on pedestrian safety. In addition, the “arrow” was more intuitive to identify than the “smile” in terms of visual modality.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1572
Author(s):  
Lukas Merker ◽  
Joachim Steigenberger ◽  
Rafael Marangoni ◽  
Carsten Behn

Just as the sense of touch complements vision in various species, several robots could benefit from advanced tactile sensors, in particular when operating under poor visibility. A prominent tactile sense organ, frequently serving as a natural paragon for developing tactile sensors, is the vibrissae of, e.g., rats. Within this study, we present a vibrissa-inspired sensor concept for 3D object scanning and reconstruction to be exemplarily used in mobile robots. The setup consists of a highly flexible rod attached to a 3D force-torque transducer (measuring device). The scanning process is realized by translationally shifting the base of the rod relative to the object. Consequently, the rod sweeps over the object’s surface, undergoing large bending deflections. Then, the support reactions at the base of the rod are evaluated for contact localization. Presenting a method of theoretically generating these support reactions, we provide an important basis for future parameter studies. During scanning, lateral slip of the rod is not actively prevented, in contrast to literature. In this way, we demonstrate the suitability of the sensor for passively dragging it on a mobile robot. Experimental scanning sweeps using an artificial vibrissa (steel wire) of length 50 mm and a glass sphere as a test object with a diameter of 60 mm verify the theoretical results and serve as a proof of concept.


Sign in / Sign up

Export Citation Format

Share Document