scholarly journals Apolipoprotein CIII Overexpression-Induced Hypertriglyceridemia Increases Nonalcoholic Fatty Liver Disease in Association with Inflammation and Cell Death

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Adriene A. Paiva ◽  
Helena F. Raposo ◽  
Amarylis C. B. A. Wanschel ◽  
Tarlliza R. Nardelli ◽  
Helena C. F. Oliveira

Nonalcoholic fatty liver disease (NAFLD) is the principal manifestation of liver disease in obesity and metabolic syndrome. By comparing hypertriglyceridemic transgenic mice expressing apolipoprotein (apo) CIII with control nontransgenic (NTg) littermates, we demonstrated that overexpression of apoCIII, independent of a high-fat diet (HFD), produces NAFLD-like features, including increased liver lipid content; decreased antioxidant power; increased expression of TNFα, TNFα receptor, cleaved caspase-1, and interleukin-1β; decreased expression of adiponectin receptor-2; and increased cell death. This phenotype is aggravated and additional NAFLD features are differentially induced in apoCIII mice fed a HFD. HFD induced glucose intolerance together with increased gluconeogenesis, indicating hepatic insulin resistance. Additionally, the HFD led to marked increases in plasma TNFα (8-fold) and IL-6 (60%) in apoCIII mice. Cell death signaling (Bax/Bcl2), effector (caspase-3), and apoptosis were augmented in apoCIII mice regardless of whether a HFD or a low-fat diet was provided. Fenofibrate treatment reversed several of the effects associated with diet and apoCIII expression but did not normalize inflammatory traits even when liver lipid content was fully corrected. These results indicate that apoCIII and/or hypertriglyceridemia plays a major role in liver inflammation and cell death, which in turn increases susceptibility to and the severity of diet-induced NAFLD.

2021 ◽  
Vol 14 (3) ◽  
pp. 267
Author(s):  
Geng-Ruei Chang ◽  
Po-Hsun Hou ◽  
Wei-Cheng Yang ◽  
Chao-Min Wang ◽  
Pei-Shan Fan ◽  
...  

Doxepin is commonly prescribed for depression and anxiety treatment. Doxepin-related disruptions to metabolism and renal/hepatic adverse effects remain unclear; thus, the underlying mechanism of action warrants further research. Here, we investigated how doxepin affects lipid change, glucose homeostasis, chromium (Cr) distribution, renal impairment, liver damage, and fatty liver scores in C57BL6/J mice subjected to a high-fat diet and 5 mg/kg/day doxepin treatment for eight weeks. We noted that the treated mice had higher body, kidney, liver, retroperitoneal, and epididymal white adipose tissue weights; serum and liver triglyceride, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and creatinine levels; daily food efficiency; and liver lipid regulation marker expression. They also demonstrated exacerbated insulin resistance and glucose intolerance with lower Akt phosphorylation, GLUT4 expression, and renal damage as well as higher reactive oxygen species and interleukin 1 and lower catalase, superoxide dismutase, and glutathione peroxidase levels. The treated mice had a net-negative Cr balance due to increased urinary excretion, leading to Cr mobilization, delaying hyperglycemia recovery. Furthermore, they had considerably increased fatty liver scores, paralleling increases in adiponectin, FASN, PNPLA3, FABP4 mRNA, and SREBP1 mRNA levels. In conclusion, doxepin administration potentially worsens renal injury, nonalcoholic fatty liver disease, and diabetes.


2020 ◽  
Vol 98 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Nontobeko M. Gumede ◽  
Busisani W. Lembede ◽  
Pilani Nkomozepi ◽  
Richard L. Brooksbank ◽  
Kennedy H. Erlwanger ◽  
...  

Fructose contributes to the development of nonalcoholic fatty liver disease (NAFLD). β-Sitosterol (Bst), a naturally occurring phytosterol, has antihyperlipidaemic and hepatoprotective properties. This study interrogated the potential protective effect of β-sitosterol against NAFLD in growing rats fed a high-fructose diet, modelling children fed obesogenic diets. Forty-four 21 day old male rat pups were randomly allocated to and administered the following treatments for 12 weeks: group I, standard rat chow (SRC) + plain drinking water (PW) + plain gelatine cube (PC); group II, SRC + 20% w/v fructose solution (FS) as drinking fluid + PC; group III, SRC + FS + 100 mg/kg fenofibrate in a gelatine cube; group IV, SRC + FS + 20 mg/kg β-sitosterol gelatine cube (Bst); group V, SRC + PW + Bst. Terminally, the livers were dissected out, weighed, total liver lipid content determined, and histological analyses done. Harvested plasma was used to determine the surrogate biomarkers of liver function. The high-fructose diet caused increased (p < 0.05) hepatic lipid (total) accretion (>10% liver mass), micro- and macrovesicular hepatic steatosis, and hepatic inflammation. β-Sitosterol and fenofibrate prevented the high-fructose diet-induced macrovesicular steatosis and prevented the progression of NAFLD to steatohepatitis. β-Sitosterol can prospectively be used to mitigate diet-induced NAFLD.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Alexandra Feldman ◽  
Elmar Aigner ◽  
Daniel Weghuber ◽  
Katharina Paulmichl

Obesity is a rapidly growing health problem and is paralleled by a multitude of comorbidities, including nonalcoholic fatty liver disease (NAFLD). NAFLD has become the most common chronic liver disease in both adults and children. The current understanding of NAFLD is still fragmentary. While simple steatosis is characterized by the interplay between excessive free fatty acid accumulation and hepatic insulin resistance, the progression to NASH has been related to oxidative stress and a proinflammatory state with dysbalanced adipokine, cytokine levels, and endotoxin-mediated immune response. In addition, oxidative stress has been suggested to play a central role for the sequelae leading to NASH. Trace elements are critical in regulatory, immunologic, and antioxidant functions resulting in protection against inflammation and peroxidation and consequently against the known comorbidities of obesity. Disruptions of the metal detoxification processes located in the liver are plausibly related to NAFLD development via oxidative stress. Perturbations of iron and copper (Cu) homeostasis have been shown to contribute to the pathogenesis of NAFLD. This review presents current data from pediatric studies. In addition, data from adult studies are summarized where clinical relevance may be extrapolated to pediatric obesity and NAFLD.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1906-P
Author(s):  
AMY M. GOSS ◽  
SHIMA DOWLA ◽  
AMBIKA P. ASHRAF ◽  
MARK BOLDING ◽  
SHANNON A. MORRISON ◽  
...  

2013 ◽  
Vol 218 (3) ◽  
pp. R25-R36 ◽  
Author(s):  
Mohamed Asrih ◽  
François R Jornayvaz

Nonalcoholic fatty liver disease (NAFLD) has become a major health problem in developed countries. It has affected more than 30% of the general population and is commonly associated with insulin resistance, which is a major risk factor for the development of type 2 diabetes and a central feature of the metabolic syndrome. Furthermore, accumulating evidences reveal that NAFLD as well as insulin resistance is strongly related to inflammation. Cytokines and adipokines play a pivotal role in inflammatory processes. In addition, these inflammatory mediators regulate various functions including metabolic energy balance, inflammation, and immune response. However, their role in modulating ectopic lipids involved in the development of insulin resistance, such as diacylglycerols and ceramides, remains unknown. The aim of this review is first to describe the pathophysiology of insulin resistance in NAFLD. In particular, we discuss the role of ectopic lipid accumulation in the liver. Secondly, we also summarize recent findings emphasizing the role of main inflammatory markers in both NAFLD and insulin resistance and their potential role in modulating hepatic fat content in NAFLD and associated hepatic insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document