scholarly journals Preparation and Characterization of Folate-Targeted Fe3O4 Nanoparticle Codelivering Cisplatin and TFPI-2 Plasmid DNA for Nasopharyngeal Carcinoma Therapy

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Juan Zhang ◽  
Huanhuan Weng ◽  
Xiangwan Miao ◽  
Quanming Li ◽  
Siqi Wang ◽  
...  

A novel folate (FA) receptor-targeted superparamagnetic Fe3O4 nanoparticles (SPIONs) codelivering cisplatin (CDDP) and tissue factor pathway inhibitor-2 (TFPI-2) plasmid DNA (pDNA) was constructed. The core shell nanocomposites (FA-PEG-PEI@SPION-CDDP-TFPI-2) were composed of superparamagnetic Fe3O4 core that binds CDDP and TFPI-2 shell that combines with folate-polyethylene glycol-polyethyleneimine (FA-PEG-PEI) via electrostatic interaction. The shell containing FA-PEG-PEI and TFPI-2 plasmid was synthesized through amidation reaction and electrostatic adsorption and the core containing SPION-CDDP was modified by aldehyde sodium alginate. Proton nuclear magnetic resonance and Fourier transform infrared spectra on FA-PEG-PEI polymers showed characteristic peaks of various metabolites in corresponding frequency. Transmission electron microscopy image of FA-PEG-PEI@SPION-CDDP-TFPI-2 nanoparticles demonstrated a near-monodisperse spherical morphology, while dynamic light scattering studies indicated an intensity-average diameter of 149.5 nm. Zeta potential was 14.89 ± 1.83 mv and the final concentration of loaded CDDP was 100 ug/ml. Gel electrophoresis data showed that the nanocomposite would protect TFPI-2 pDNA from being digested by DNases. Compared with CNE-2 cells, the good targetability and better gene transfection efficiency (57.9%) were detected by Prussian blue iron stain and fluorescence analysis in HNE-1 cells in vitro. The results suggested the potential application of FA-PEG-PEI@SPION-CDDP-TFPI-2 as a multifunctional anticancer nanomedicine on targeting therapy for FR positive NPC.

2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2015 ◽  
Vol 6 (5) ◽  
pp. 780-796 ◽  
Author(s):  
Cheng Wang ◽  
Xiuli Bao ◽  
Xuefang Ding ◽  
Yang Ding ◽  
Sarra Abbad ◽  
...  

A novel coating polymer LPHF is developed for the first time to elevate the transfection efficiency of DP binary polyplexes in vitro and in vivo.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Keiichi Motoyama ◽  
Yoshihiro Nakashima ◽  
Yukihiko Aramaki ◽  
Fumitoshi Hirayama ◽  
Kaneto Uekama ◽  
...  

The purpose of this study is to evaluate in vitro gene delivery mediated by asialofetuin-appended cationic liposomes (AF-liposomes) associating cyclodextrins (CyD/AF-liposomes) as a hepatocyte-selective nonviral vector. Of various CyDs, AF-liposomes associated with plasmid DNA (pDNA) and γ-cyclodextrin (γ-CyD) (pDNA/γ-CyD/AF-liposomes) showed the highest gene transfer activity in HepG2 cells without any significant cytotoxicity. In addition, γ-CyD enhanced the encapsulation ratio of pDNA with AF-liposomes, and also increased gene transfer activity as the entrapment ratio of pDNA into AF-liposomes was increased. γ-CyD stabilized the liposomal membrane of AF-liposomes and inhibited the release of calcein from AF-liposomes. The stabilizing effect of γ-CyD may be, at least in part, involved in the enhancing gene transfer activity of pDNA/γ-CyD/AF-liposomes. Therefore, these results suggest the potential use of γ-CyD for an enhancer of transfection efficiency of AF-liposomes.


2019 ◽  
Author(s):  
Sofia Bisso ◽  
Simona Mura ◽  
Bastien Castagner ◽  
Patrick Couvreur ◽  
Jean-Christophe Leroux

AbstractDespite many years of research and a few success stories with gene therapeutics, efficient and safe DNA delivery remains a major bottleneck for the clinical translation of gene-based therapies. Gene transfection with calcium phosphate (CaP) nanoparticles brings the advantages of low toxicity, high DNA entrapment efficiency and good endosomal escape properties. The macroscale aggregation of CaP nanoparticles can be easily prevented through surface coating with bisphosphonate conjugates. Bisphosphonates, such as alendronate, recently showed promising anticancer effects. However, their poor cellular permeability and preferential bone accumulation hamper their full application in chemotherapy. Here, we investigated the dual delivery of plasmid DNA and alendronate using CaP nanoparticles, with the goal to facilitate cellular internalization of both compounds and potentially achieve a combined pharmacological effect on the same or different cell lines. A pH-sensitive poly(ethylene glycol)-alendronate conjugate was synthetized and used to formulate stable plasmid DNA-loaded CaP nanoparticles. These particles displayed good transfection efficiency in cancer cells and a strong cytotoxic effect on macrophages. The in vivo transfection efficiency, however, remained low, calling for an improvement of the system, possibly with respect to the extent of particle uptake and their physical stability.Graphical abstract


2019 ◽  
Vol 1 ◽  
pp. e1 ◽  
Author(s):  
Dominik M. Loy ◽  
Philipp M. Klein ◽  
Rafał Krzysztoń ◽  
Ulrich Lächelt ◽  
Joachim O. Rädler ◽  
...  

Therapeutic nucleic acids provide versatile treatment options for hereditary or acquired diseases. Ionic complexes with basic polymers are frequently used to facilitate nucleic acid’s transport to intracellular target sites. Usually, these polyplexes are prepared manually by mixing two components: polyanionic nucleic acids and polycations. However, parameters such as internal structure, size, polydispersity and surface charge of the complexes sensitively affect pharmaceutical efficiency. Hence a controlled assembly is of paramount importance in order to ensure high product quality. In the current study, we present a microfluidic platform for controlled, sequential formulation of polyplexes. We use oligo-amidoamines (termed “oligomers”) with precise molecular weight and defined structure due to their solid phase supported synthesis. The assembly of the polyplexes was performed in a microfluidic chip in two steps employing a design of two successive Y junctions: first, siRNA and core oligomers were assembled into core polyplexes. These core oligomers possess compacting, stabilizing, and endosomal escape mediating motifs. Second, new functional motifs were mixed to the core particles and integrated into the core polyplex. The iterative assembly formed multi-component polyplexes in a highly controlled manner and enabled us to investigate structure-function relationships. We chose nanoparticle shielding polyethylene glycol (PEG) and cell targeting folic acid (termed “PEG-ligands”) as functional components. The PEG-ligands were coupled to lipid anchor oligomers via strain promoted azide—alkyne click chemistry. The lipid anchors feature four cholanic acids for inserting various PEG-ligands into the core polyplex by non-covalent hydrophobic interactions. These core—lipid anchor—PEG-ligand polyplexes containing folate as cell binding ligand were used to determine the optimal PEG-ligand length for transfecting folate receptor-expressing KB cells in vitro. We found that polyplexes with 20 mol % PEG-ligands (relative to ncore oligomer) showed optimal siRNA mediated gene knock-down when containing defined PEG domains of in sum 24 and 36 ethylene oxide repetitions, 12 EOs each from the lipid anchor and 12 or 24 EOs from the PEG-ligand, respectively. These results confirm that transfection efficiency depends on the linker length and stoichiometry and are consistent with previous findings using core—PEG-ligand polyplexes formed by click modification of azide-containing core polyplexes with aforementioned PEG-ligands. Hence, successive microfluidic assembly might be a potentially powerful route to create defined multi-component polyplexes with reduced batch-to-batch variability.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yinan Zhao ◽  
Tianyi Zhao ◽  
Yanyan Du ◽  
Yingnan Cao ◽  
Yang Xuan ◽  
...  

Abstract Background During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency. Results As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp (− 0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in HeLa cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplex was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the “proton sponge effect” of the lipid. Conclusions The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ana V. Oliveira ◽  
Diogo B. Bitoque ◽  
Gabriela A. Silva

The low gene transfer efficiency of chitosan-DNA polyplexes is a consequence of their high stability and consequent slow DNA release. The incorporation of an anionic polymer is believed to loosen chitosan interactions with DNA and thus promote higher transfection efficiencies. In this work, several formulations of chitosan-DNA polyplexes incorporating hyaluronic acid were prepared and characterized for their gene transfection efficiency on both HEK293 and retinal pigment epithelial cells. The different polyplex formulations showed morphology, size, and charge compatible with a role in gene delivery. The incorporation of hyaluronic acid rendered the formulations less stable, as was the goal, but it did not affect the loading and protection of the DNA. Compared with chitosan alone, the transfection efficiency had a 4-fold improvement, which was attributed to the presence of hyaluronic acid. Overall, our hybrid chitosan-hyaluronic acid polyplexes showed a significant improvement of the efficiency of chitosan-based nonviral vectorsin vitro, suggesting that this strategy can further improve the transfection efficiency of nonviral vectors.


Sign in / Sign up

Export Citation Format

Share Document