scholarly journals A microfluidic approach for sequential assembly of siRNA polyplexes with a defined structure-activity relationship

2019 ◽  
Vol 1 ◽  
pp. e1 ◽  
Author(s):  
Dominik M. Loy ◽  
Philipp M. Klein ◽  
Rafał Krzysztoń ◽  
Ulrich Lächelt ◽  
Joachim O. Rädler ◽  
...  

Therapeutic nucleic acids provide versatile treatment options for hereditary or acquired diseases. Ionic complexes with basic polymers are frequently used to facilitate nucleic acid’s transport to intracellular target sites. Usually, these polyplexes are prepared manually by mixing two components: polyanionic nucleic acids and polycations. However, parameters such as internal structure, size, polydispersity and surface charge of the complexes sensitively affect pharmaceutical efficiency. Hence a controlled assembly is of paramount importance in order to ensure high product quality. In the current study, we present a microfluidic platform for controlled, sequential formulation of polyplexes. We use oligo-amidoamines (termed “oligomers”) with precise molecular weight and defined structure due to their solid phase supported synthesis. The assembly of the polyplexes was performed in a microfluidic chip in two steps employing a design of two successive Y junctions: first, siRNA and core oligomers were assembled into core polyplexes. These core oligomers possess compacting, stabilizing, and endosomal escape mediating motifs. Second, new functional motifs were mixed to the core particles and integrated into the core polyplex. The iterative assembly formed multi-component polyplexes in a highly controlled manner and enabled us to investigate structure-function relationships. We chose nanoparticle shielding polyethylene glycol (PEG) and cell targeting folic acid (termed “PEG-ligands”) as functional components. The PEG-ligands were coupled to lipid anchor oligomers via strain promoted azide—alkyne click chemistry. The lipid anchors feature four cholanic acids for inserting various PEG-ligands into the core polyplex by non-covalent hydrophobic interactions. These core—lipid anchor—PEG-ligand polyplexes containing folate as cell binding ligand were used to determine the optimal PEG-ligand length for transfecting folate receptor-expressing KB cells in vitro. We found that polyplexes with 20 mol % PEG-ligands (relative to ncore oligomer) showed optimal siRNA mediated gene knock-down when containing defined PEG domains of in sum 24 and 36 ethylene oxide repetitions, 12 EOs each from the lipid anchor and 12 or 24 EOs from the PEG-ligand, respectively. These results confirm that transfection efficiency depends on the linker length and stoichiometry and are consistent with previous findings using core—PEG-ligand polyplexes formed by click modification of azide-containing core polyplexes with aforementioned PEG-ligands. Hence, successive microfluidic assembly might be a potentially powerful route to create defined multi-component polyplexes with reduced batch-to-batch variability.

2019 ◽  
Author(s):  
Dominik M Loy ◽  
Philipp M Klein ◽  
Rafał Krzysztoń ◽  
Ulrich Lächelt ◽  
Joachim O Rädler ◽  
...  

Therapeutic nucleic acids provide versatile treatment options for hereditary or acquired diseases. Ionic complexes with basic polymers are frequently used to facilitate nucleic acid’s transport to intracellular target sites. Usually, these polyplexes are prepared manually by mixing two components: polyanionic nucleic acids and polycations. However, parameters such as internal structure, size, polydispersity and surface charge of the complexes sensitively affect pharmaceutical efficiency. Hence a controlled assembly is of paramount importance in order to ensure high product quality. In the current study, we present a microfluidic platform for controlled, sequential formulation of polyplexes. We use oligo-amidoamines (termed ‘oligomers’) with precise molecular weight and defined structure due to their solid phase supported synthesis. The assembly of the polyplexes was performed in a microfluidic chip in two steps employing a design of two successive Y junctions: first, siRNA and core oligomers were assembled into core polyplexes. These core oligomers possess compacting, stabilizing, and endosomal escape mediating motifs. Second, new functional motifs were mixed to the core particles and integrated into the core polyplex. The iterative assembly formed multi-component polyplexes in a highly controlled manner and enabled us to investigate structure - function relationships. We chose nanoparticle shielding PEG and cell targeting folic acid (termed ‘PEG-ligands’) as functional components. The PEG-ligands were coupled to lipid anchor oligomers via strain promoted azide – alkyne click chemistry. The lipid anchors feature four cholanic acids for inserting various PEG-ligands into the core polyplex by non-covalent hydrophobic interactions. These core - lipid anchor - PEG-ligand polyplexes containing folate as cell binding ligand were used to determine the optimal PEG-ligand length for transfecting folate receptor-expressing KB cells in vitro. We found that polyplexes with 20 mol % PEG-ligands (relative to ncore oligomer) showed optimal siRNA mediated gene knock-down when containing defined polyethylene glycol (PEG) domains of in sum 24 and 36 ethylene oxide (EO) repetitions. These results confirm that transfection efficiency depends on the linker length and stoichiometry and are consistent with previous findings using core - PEG-ligand polyplexes formed by click modification of azide-containing core polyplexes with DBCO-PEG-ligand. Hence successive microfluidic assembly might be a potentially powerful route to create defined multi-component polyplexes with reduced batch-to-batch variability.


2019 ◽  
Author(s):  
Dominik M Loy ◽  
Philipp M Klein ◽  
Rafał Krzysztoń ◽  
Ulrich Lächelt ◽  
Joachim O Rädler ◽  
...  

Therapeutic nucleic acids provide versatile treatment options for hereditary or acquired diseases. Ionic complexes with basic polymers are frequently used to facilitate nucleic acid’s transport to intracellular target sites. Usually, these polyplexes are prepared manually by mixing two components: polyanionic nucleic acids and polycations. However, parameters such as internal structure, size, polydispersity and surface charge of the complexes sensitively affect pharmaceutical efficiency. Hence a controlled assembly is of paramount importance in order to ensure high product quality. In the current study, we present a microfluidic platform for controlled, sequential formulation of polyplexes. We use oligo-amidoamines (termed ‘oligomers’) with precise molecular weight and defined structure due to their solid phase supported synthesis. The assembly of the polyplexes was performed in a microfluidic chip in two steps employing a design of two successive Y junctions: first, siRNA and core oligomers were assembled into core polyplexes. These core oligomers possess compacting, stabilizing, and endosomal escape mediating motifs. Second, new functional motifs were mixed to the core particles and integrated into the core polyplex. The iterative assembly formed multi-component polyplexes in a highly controlled manner and enabled us to investigate structure - function relationships. We chose nanoparticle shielding PEG and cell targeting folic acid (termed ‘PEG-ligands’) as functional components. The PEG-ligands were coupled to lipid anchor oligomers via strain promoted azide – alkyne click chemistry. The lipid anchors feature four cholanic acids for inserting various PEG-ligands into the core polyplex by non-covalent hydrophobic interactions. These core - lipid anchor - PEG-ligand polyplexes containing folate as cell binding ligand were used to determine the optimal PEG-ligand length for transfecting folate receptor-expressing KB cells in vitro. We found that polyplexes with 20 mol % PEG-ligands (relative to ncore oligomer) showed optimal siRNA mediated gene knock-down when containing defined polyethylene glycol (PEG) domains of in sum 24 and 36 ethylene oxide (EO) repetitions. These results confirm that transfection efficiency depends on the linker length and stoichiometry and are consistent with previous findings using core - PEG-ligand polyplexes formed by click modification of azide-containing core polyplexes with DBCO-PEG-ligand. Hence successive microfluidic assembly might be a potentially powerful route to create defined multi-component polyplexes with reduced batch-to-batch variability.


Author(s):  
A. A. Mikheev ◽  
E. V. Shmendel ◽  
E. S. Zhestovskaya ◽  
G. V. Nazarov ◽  
M. A. Maslov

Objectives. Gene therapy is based on the introduction of genetic material into cells, tissues, or organs for the treatment of hereditary or acquired diseases. A key factor in the success of gene therapy is the development of delivery systems that can efficiently transfer genetic material to the place of their therapeutic action without causing any associated side effects. Over the past 10 years, significant effort has been directed toward creating more efficient and biocompatible vectors capable of transferring nucleic acids (NAs) into cells without inducing an immune response. Cationic liposomes are among the most versatile tools for delivering NAs into cells; however, the use of liposomes for gene therapy is limited by their low specificity. This is due to the presence of various biological barriers to the complex of liposomes with NA, including instability in biological fluids, interaction with serum proteins, plasma and nuclear membranes, and endosomal degradation. This review summarizes the results of research in recent years on the development of cationic liposomes that are effective in vitro and in vivo. Particular attention is paid to the individual structural elements of cationic liposomes that determine the transfection efficiency and cytotoxicity. The purpose of this review was to provide a theoretical justification of the most promising choice of cationic liposomes for the delivery of NAs into eukaryotic cells and study the effect of the composition of cationic lipids (CLs) on the transfection efficiency in vitro.Results. As a result of the analysis of the related literature, it can be argued that one of the most promising delivery systems of NAs is CL based on cholesterol and spermine with the addition of a helper lipid DOPE. In addition, it was found that varying the composition of cationic liposomes, the ratio of CL to NA, or the size and zeta potential of liposomes has a significant effect on the transfection efficiency.Conclusions. Further studies in this direction should include optimization of the conditions for obtaining cationic liposomes, taking into account the physicochemical properties and established laws. It is necessary to identify mechanisms that increase the efficiency of NA delivery in vitro by searching for optimal structures of cationic liposomes, determining the ratio of lipoplex components, and studying the delivery efficiency and properties of multicomponent liposomes.


2006 ◽  
Vol 6 (9) ◽  
pp. 2860-2866 ◽  
Author(s):  
Dongwon Lee ◽  
Richard Lockey ◽  
Shyam Mohapatra

Chitosan-mediated gene delivery has gained an increasing interest due to its ability to treat cancers and genetic diseases. However, low transfection efficiency and lack of target specificity limit its application for gene and drug delivery. In the present work, folic acid was covalently conjugated to chitosan as a targeting ligand in an attempt to specifically deliver DNA to folate receptor-overexpressing cancer cells. Folic acid-conjugated chitosan (FACN) was successfully synthesized and characterized by 1H-NMR and is biocompatible. In vitro gene transfer potential of FACN was evaluated in human epithelial ovarian cancer OV2008 cells and human breast cancer MCF-7 cells. FACN at a weight ratio of 10 : 1 exhibited significantly (< 0.01) enhanced gene transfer potential in folate receptor-overexpressing cancer cells as compared to unmodified chitosan. Transfection of FACN/pDNA nanocomplexes is competitively inhibited by free folic acid, suggesting the specific gene delivery of FACN/pDNA nanocomplexes is achieved through folate receptor-mediated endocytosis. Taken together, these results demonstrate that FACN provides a promising carrier for cancer gene therapy.


2021 ◽  
Vol 22 (17) ◽  
pp. 9216
Author(s):  
Elnaz Shaabani ◽  
Maryam Sharifiaghdam ◽  
Joris Lammens ◽  
Herlinde De Keersmaecker ◽  
Chris Vervaet ◽  
...  

Impaired wound healing in people with diabetes has multifactorial causes, with insufficient neovascularization being one of the most important. Hypoxia-inducible factor-1 (HIF-1) plays a central role in the hypoxia-induced response by activating angiogenesis factors. As its activity is under precise regulatory control of prolyl-hydroxylase domain 2 (PHD-2), downregulation of PHD-2 by small interfering RNA (siRNA) could stabilize HIF-1α and, therefore, upregulate the expression of pro-angiogenic factors as well. Intracellular delivery of siRNA can be achieved with nanocarriers that must fulfill several requirements, including high stability, low toxicity, and high transfection efficiency. Here, we designed and compared the performance of layer-by-layer self-assembled siRNA-loaded gold nanoparticles with two different outer layers—Chitosan (AuNP@CS) and Poly L-arginine (AuNP@PLA). Although both formulations have exactly the same core, we find that a PLA outer layer improves the endosomal escape of siRNA, and therefore, transfection efficiency, after endocytic uptake in NIH-3T3 cells. Furthermore, we found that endosomal escape of AuNP@PLA could be improved further when cells were additionally treated with desloratadine, thus outperforming commercial reagents such as Lipofectamine® and jetPRIME®. AuNP@PLA in combination with desloratadine was proven to induce PHD-2 silencing in fibroblasts, allowing upregulation of pro-angiogenic pathways. This finding in an in vitro context constitutes a first step towards improving diabetic wound healing with siRNA therapy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ina F. de la Fuente ◽  
Shraddha S. Sawant ◽  
Mark Q. Tolentino ◽  
Patrick M. Corrigan ◽  
Jessica L. Rouge

Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1822
Author(s):  
Joe-Hui Ong ◽  
Jiun-An Koh ◽  
Hui Cao ◽  
Sheri-Ann Tan ◽  
Fazilah Abd Manan ◽  
...  

Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6–14 residues; 633–1518 Da). The peptides consisted of 33–86% hydrophobic and 10–67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (−4.7 to −4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yinan Zhao ◽  
Tianyi Zhao ◽  
Yanyan Du ◽  
Yingnan Cao ◽  
Yang Xuan ◽  
...  

Abstract Background During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency. Results As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp (− 0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in HeLa cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplex was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the “proton sponge effect” of the lipid. Conclusions The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


2019 ◽  
Author(s):  
Shubiao Zhang ◽  
Yinan Zhao ◽  
Yanyan Du ◽  
Yingnan Cao ◽  
Yang Xuan ◽  
...  

Abstract Background: During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency.Results: As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp(-0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in Hela cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplexes was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the “proton sponge effect” of the lipid.Conclusions: The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Juan Zhang ◽  
Huanhuan Weng ◽  
Xiangwan Miao ◽  
Quanming Li ◽  
Siqi Wang ◽  
...  

A novel folate (FA) receptor-targeted superparamagnetic Fe3O4 nanoparticles (SPIONs) codelivering cisplatin (CDDP) and tissue factor pathway inhibitor-2 (TFPI-2) plasmid DNA (pDNA) was constructed. The core shell nanocomposites (FA-PEG-PEI@SPION-CDDP-TFPI-2) were composed of superparamagnetic Fe3O4 core that binds CDDP and TFPI-2 shell that combines with folate-polyethylene glycol-polyethyleneimine (FA-PEG-PEI) via electrostatic interaction. The shell containing FA-PEG-PEI and TFPI-2 plasmid was synthesized through amidation reaction and electrostatic adsorption and the core containing SPION-CDDP was modified by aldehyde sodium alginate. Proton nuclear magnetic resonance and Fourier transform infrared spectra on FA-PEG-PEI polymers showed characteristic peaks of various metabolites in corresponding frequency. Transmission electron microscopy image of FA-PEG-PEI@SPION-CDDP-TFPI-2 nanoparticles demonstrated a near-monodisperse spherical morphology, while dynamic light scattering studies indicated an intensity-average diameter of 149.5 nm. Zeta potential was 14.89 ± 1.83 mv and the final concentration of loaded CDDP was 100 ug/ml. Gel electrophoresis data showed that the nanocomposite would protect TFPI-2 pDNA from being digested by DNases. Compared with CNE-2 cells, the good targetability and better gene transfection efficiency (57.9%) were detected by Prussian blue iron stain and fluorescence analysis in HNE-1 cells in vitro. The results suggested the potential application of FA-PEG-PEI@SPION-CDDP-TFPI-2 as a multifunctional anticancer nanomedicine on targeting therapy for FR positive NPC.


Sign in / Sign up

Export Citation Format

Share Document