scholarly journals Particle Ratios from Strongly Interacting Hadronic Matter

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Waseem Bashir ◽  
Saeed Uddin ◽  
Hamid Nanda

We calculate the particle ratios K+/π+, K-/π-, and Λ/π- for a strongly interacting hadronic matter using nonlinear Walecka model (NLWM) in relativistic mean field (RMF) approximation. It is found that interactions among hadrons modify K+/π+ and Λ/π- particle ratios, while K-/π- is found to be insensitive to these interactions.

1997 ◽  
Vol 50 (1) ◽  
pp. 23 ◽  
Author(s):  
T. Tatsumi ◽  
H. Shin ◽  
T. Maruyama ◽  
H. Fujii

We consider modification of kaons and the implications for dilepton production in the early stage of high-energy heavy-ion collisions. Constructing the equation of state of hadronic matter, including kaons as well as hyperons Λ with recourse to the relativistic mean-field theory, we study the production rate of dileptons. The possibility of K+ condensation is also revisited in this framework.


Open Physics ◽  
2012 ◽  
Vol 10 (3) ◽  
Author(s):  
Gianpiero Gervino ◽  
Andrea Lavagno ◽  
Daniele Pigato

AbstractWe investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We impose the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For the hadronic phase, we study an extended relativistic mean-field theoretical model with the inclusion of strange particles (hyperons and mesons). For the quark sector, we employ an extended MIT-Bag model. In this context we focus on the relevance of non-extensive effects in the presence of strange matter.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Ignacio Ranea-Sandoval ◽  
Milva Orsaria ◽  
Germán Malfatti ◽  
Daniela Curin ◽  
Mauro Mariani ◽  
...  

We study local and non-local Polyakov Nambu-Jona-Lasinio models and analyze their respective phase transition diagram. We construct hybrid stars using the zero temperature limit of the local and non-local versions of Nambu-Jona-Lasinio model for quark matter and the modern GM1(L) parametrization of the non-linear relativistic mean field model for hadronic matter. We compare our models with data from PSR J1614-2230 and PSR J0343+0432 and also from GW170817 and its electromagnetic counterpart GRB170817A and AT2017gfo. We study observational signatures of the appearance of a mixed phase as a result of modeling a phase transition that mimics the Gibbs formalism and compare the results with the sharp first-order phase transition obtained using the Maxwell construction. We also study in detail the g-mode associated with discontinuities in the equation of state, and calculate non-radial oscillation modes using relativistic Cowling approximation.


2007 ◽  
Vol 16 (02n03) ◽  
pp. 175-183 ◽  
Author(s):  
J. C. T. DE OLIVEIRA ◽  
S. B. DUARTE ◽  
H. RODRIGUES ◽  
M. CHIAPPARINI ◽  
M. KYOTOKU

We investigate the effect of Δ-resonance interaction strength on the equation of state of asymmetric hadronic matter and neutron stars structure. We discuss Δ-matter formation at high densities in the context of a relativistic mean field theory. We show that the attractive nature of the Δ-baryon interaction can induce a phase transition accompanying Δ-matter formation, at values of densities presumably existing in central regions of neutron stars. The possibility of a rich Δ-resonance neutron star is presented using the proposed equation of state.


2004 ◽  
Vol 13 (07) ◽  
pp. 1255-1259 ◽  
Author(s):  
EDUARDO LÜTZ ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG

Based on non-crossed, crossed and correlated ππ exchanges with irreducible N, Δ intermediate states, we predict an isovector component for the σ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I=0,1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature.


2007 ◽  
Vol 16 (09) ◽  
pp. 2867-2871 ◽  
Author(s):  
C. A. Z. VASCONCELLOS ◽  
E. LÜTZ ◽  
M. RAZEIRA ◽  
B. E. J. BODMANN ◽  
M. DILLIG ◽  
...  

We have predicted (contribution to this issue) an isovector component of the light scalar meson sector by using the chiral symmetry transformation formalism. On the basis of this result, we study dense hadronic matter in a generalized relativistic mean field approach with σ, ω and ρ mesons as well as nonlinear self-couplings of the I = 1 component of a light scalar meson field and compare its predictions for neutron star properties with results from different models for nuclear matter found in the literature.


2010 ◽  
Vol 19 (12) ◽  
pp. 2594-2599
Author(s):  
D. Gazda ◽  
J. Mareš ◽  
E. Friedman ◽  
A. Gal

We report on recent relativistic mean-field calculations of multi-[Formula: see text] nuclei1,2 which were performed fully and self-consistently across the periodic table. The [Formula: see text] separation energy [Formula: see text] as well as the nuclear and [Formula: see text]-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei — strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the [Formula: see text] separation energy [Formula: see text] does not exceed 200 MeV, multi-[Formula: see text] nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.


1995 ◽  
Vol 10 (37) ◽  
pp. 2809-2818 ◽  
Author(s):  
QI-REN ZHANG ◽  
WALTER GREINER

We generalize the Walecka model for nuclear matter by including the π-field. It is found that a finite mean π-field may lower the energy per nucleon even in the nuclear matter of subnormal density. A mean π-field may significantly change the nuclear equation of state. The importance of considering the π-field in the relativistic mean field theory for nuclear matter is therefore emphasized.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950040 ◽  
Author(s):  
Debashree Sen ◽  
T. K. Jha

We explore the possibility of formation of [Formula: see text] baryons (1232[Formula: see text]MeV) in neutron star matter in an effective chiral model within the relativistic mean-field framework. With variation in delta-meson couplings, consistent with the constraints imposed on them, the resulting equation-of-state (EoS) is obtained and the neutron star properties are calculated for static and spherical configuration. Within the framework of our model, the critical densities of formation of [Formula: see text] and the properties of neutron stars (NS) are found to be very sensitive to the iso-vector coupling compared to the scalar or vector couplings. We revisit the [Formula: see text] puzzle and look for the possibility of phase transition from nonstrange hadronic matter (including nucleons and [Formula: see text]) to deconfined quark matter, based on QCD theories. The resultant hybrid star configurations satisfy the observational constraints on mass from the most massive pulsars PSR J1614-2230 and PSR J0348+0432 in static condition obtained with the general hydrostatic equilibrium based on GTR. Our radius estimates are well within the limits imposed from observational analysis of QLMBXs. The obtained values of [Formula: see text] are in agreement with the recent bounds specified from the observation of gravitational wave (GW170817) from binary neutron star merger. The constraint on baryonic mass from the study of binary system PSR J0737-3039 is also satisfied with our hybrid EoS.


Sign in / Sign up

Export Citation Format

Share Document