scholarly journals A Novel Active Semisupervised Convolutional Neural Network Algorithm for SAR Image Recognition

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Fei Gao ◽  
Zhenyu Yue ◽  
Jun Wang ◽  
Jinping Sun ◽  
Erfu Yang ◽  
...  

Convolutional neural network (CNN) can be applied in synthetic aperture radar (SAR) object recognition for achieving good performance. However, it requires a large number of the labelled samples in its training phase, and therefore its performance could decrease dramatically when the labelled samples are insufficient. To solve this problem, in this paper, we present a novel active semisupervised CNN algorithm. First, the active learning is used to query the most informative and reliable samples in the unlabelled samples to extend the initial training dataset. Next, a semisupervised method is developed by adding a new regularization term into the loss function of CNN. As a result, the class probability information contained in the unlabelled samples can be maximally utilized. The experimental results on the MSTAR database demonstrate the effectiveness of the proposed algorithm despite the lack of the initial labelled samples.

2019 ◽  
Vol 11 (2) ◽  
pp. 135 ◽  
Author(s):  
Xiaoran Shi ◽  
Feng Zhou ◽  
Shuang Yang ◽  
Zijing Zhang ◽  
Tao Su

Aiming at the problem of the difficulty of high-resolution synthetic aperture radar (SAR) image acquisition and poor feature characterization ability of low-resolution SAR image, this paper proposes a method of an automatic target recognition method for SAR images based on a super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN). First, the threshold segmentation is utilized to eliminate the SAR image background clutter and speckle noise and accurately extract target area of interest. Second, the low-resolution SAR image is enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in the SAR image. Third, the automatic classification and recognition for SAR image is realized by using DCNN with good generalization performance. Finally, the open data set, moving and stationary target acquisition and recognition, is utilized and good recognition results are obtained under standard operating condition and extended operating conditions, which verify the effectiveness, robustness, and good generalization performance of the proposed method.


2021 ◽  
Vol 13 (17) ◽  
pp. 3444
Author(s):  
Hao Wang ◽  
Zhendong Ding ◽  
Xinyi Li ◽  
Shiyu Shen ◽  
Xiaodong Ye ◽  
...  

Synthetic aperture radar (SAR) images are often disturbed by speckle noise, making SAR image interpretation tasks more difficult. Therefore, speckle suppression becomes a pre-processing step. In recent years, approaches based on convolutional neural network (CNN) achieved good results in synthetic aperture radar (SAR) images despeckling. However, these CNN-based SAR images despeckling approaches usually require large computational resources, especially in the case of huge training data. In this paper, we proposed a SAR image despeckling method using a CNN platform with a new learnable spatial activation function, which required significantly fewer network parameters without incurring any degradation in performance over the state-of-the-art despeckling methods. Specifically, we redefined the rectified linear units (ReLU) function by adding a convolutional kernel to obtain the weight map of each pixel, making the activation function learnable. Meanwhile, we designed several experiments to demonstrate the advantages of our method. In total, 400 images from Google Earth comprising various scenes were selected as a training set in addition to 10 Google Earth images including athletic field, buildings, beach, and bridges as a test set, which achieved good despeckling effects in both visual and index results (peak signal to noise ratio (PSNR): 26.37 ± 2.68 and structural similarity index (SSIM): 0.83 ± 0.07 for different speckle noise levels). Extensive experiments were performed on synthetic and real SAR images to demonstrate the effectiveness of the proposed method, which proved to have a superior despeckling effect and higher ENL magnitudes than the existing methods. Our method was applied to coniferous forest, broad-leaved forest, and conifer broad-leaved mixed forest and proved to have a good despeckling effect (PSNR: 23.84 ± 1.09 and SSIM: 0.79 ± 0.02). Our method presents a robust framework inspired by the deep learning technology that realizes the speckle noise suppression for various remote sensing images.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hideaki Hirashima ◽  
Mitsuhiro Nakamura ◽  
Pascal Baillehache ◽  
Yusuke Fujimoto ◽  
Shota Nakagawa ◽  
...  

Abstract Background This study aimed to (1) develop a fully residual deep convolutional neural network (CNN)-based segmentation software for computed tomography image segmentation of the male pelvic region and (2) demonstrate its efficiency in the male pelvic region. Methods A total of 470 prostate cancer patients who had undergone intensity-modulated radiotherapy or volumetric-modulated arc therapy were enrolled. Our model was based on FusionNet, a fully residual deep CNN developed to semantically segment biological images. To develop the CNN-based segmentation software, 450 patients were randomly selected and separated into the training, validation and testing groups (270, 90, and 90 patients, respectively). In Experiment 1, to determine the optimal model, we first assessed the segmentation accuracy according to the size of the training dataset (90, 180, and 270 patients). In Experiment 2, the effect of varying the number of training labels on segmentation accuracy was evaluated. After determining the optimal model, in Experiment 3, the developed software was used on the remaining 20 datasets to assess the segmentation accuracy. The volumetric dice similarity coefficient (DSC) and the 95th-percentile Hausdorff distance (95%HD) were calculated to evaluate the segmentation accuracy for each organ in Experiment 3. Results In Experiment 1, the median DSC for the prostate were 0.61 for dataset 1 (90 patients), 0.86 for dataset 2 (180 patients), and 0.86 for dataset 3 (270 patients), respectively. The median DSCs for all the organs increased significantly when the number of training cases increased from 90 to 180 but did not improve upon further increase from 180 to 270. The number of labels applied during training had a little effect on the DSCs in Experiment 2. The optimal model was built by 270 patients and four organs. In Experiment 3, the median of the DSC and the 95%HD values were 0.82 and 3.23 mm for prostate; 0.71 and 3.82 mm for seminal vesicles; 0.89 and 2.65 mm for the rectum; 0.95 and 4.18 mm for the bladder, respectively. Conclusions We have developed a CNN-based segmentation software for the male pelvic region and demonstrated that the CNN-based segmentation software is efficient for the male pelvic region.


2021 ◽  
Vol 11 (13) ◽  
pp. 6085
Author(s):  
Jesus Salido ◽  
Vanesa Lomas ◽  
Jesus Ruiz-Santaquiteria ◽  
Oscar Deniz

There is a great need to implement preventive mechanisms against shootings and terrorist acts in public spaces with a large influx of people. While surveillance cameras have become common, the need for monitoring 24/7 and real-time response requires automatic detection methods. This paper presents a study based on three convolutional neural network (CNN) models applied to the automatic detection of handguns in video surveillance images. It aims to investigate the reduction of false positives by including pose information associated with the way the handguns are held in the images belonging to the training dataset. The results highlighted the best average precision (96.36%) and recall (97.23%) obtained by RetinaNet fine-tuned with the unfrozen ResNet-50 backbone and the best precision (96.23%) and F1 score values (93.36%) obtained by YOLOv3 when it was trained on the dataset including pose information. This last architecture was the only one that showed a consistent improvement—around 2%—when pose information was expressly considered during training.


Sign in / Sign up

Export Citation Format

Share Document