scholarly journals Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Niu ◽  
Xuncai Zhang ◽  
Feng Han

Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1066
Author(s):  
Khalid M. Hosny ◽  
Sara T. Kamal ◽  
Mohamed M. Darwish ◽  
George A. Papakostas

In the age of Information Technology, the day-life required transmitting millions of images between users. Securing these images is essential. Digital image encryption is a well-known technique used in securing image content. In image encryption techniques, digital images are converted into noise images using secret keys, where restoring them to their originals required the same keys. Most image encryption techniques depend on two steps: confusion and diffusion. In this work, a new algorithm presented for image encryption using a hyperchaotic system and Fibonacci Q-matrix. The original image is confused in this algorithm, utilizing randomly generated numbers by the six-dimension hyperchaotic system. Then, the permutated image diffused using the Fibonacci Q-matrix. The proposed image encryption algorithm tested using noise and data cut attacks, histograms, keyspace, and sensitivity. Moreover, the proposed algorithm’s performance compared with several existing algorithms using entropy, correlation coefficients, and robustness against attack. The proposed algorithm achieved an excellent security level and outperformed the existing image encryption algorithms.


2021 ◽  
Author(s):  
Younes Qobbi ◽  
Abdeltif jarjar ◽  
Mohamed Essaid ◽  
Abdelhamid Benazzi

Abstract Based on the two-dimensional logistic map and a single improved genetic operator, a new image encryption system is proposed. The original image is transformed into DNA sequences, a subdivision into blocks of size calculated by using the chaotic map, with the intention to apply a crossover between blocks chaotically selected from a chaotic control vectors. For the installation of a diffusion phase, a strong link is established between the block resulting from a crossing operation and the next original block. Hoping to considerably increase the impact of the avalanche effect and protect the system against any differential attack. Simulations performed on a large number of images of different size and formats ensure that our method is not subject to any known attacks.


Chaotic systems behavior attracts many researchers in the field of image encryption. The major advantage of using chaos as the basis for developing a crypto-system is due to its sensitivity to initial conditions and parameter tunning as well as the random-like behavior which resembles the main ingredients of a good cipher namely the confusion and diffusion properties. In this article, we present a new scheme based on the synchronization of dual chaotic systems namely Lorenz and Chen chaotic systems and prove that those chaotic maps can be completely synchronized with other under suitable conditions and specific parameters that make a new addition to the chaotic based encryption systems. This addition provides a master-slave configuration that is utilized to construct the proposed dual synchronized chaos-based cipher scheme. The common security analyses are performed to validate the effectiveness of the proposed scheme. Based on all experiments and analyses, we can conclude that this scheme is secure, efficient, robust, reliable, and can be directly applied successfully for many practical security applications in insecure network channels such as the Internet


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1770
Author(s):  
Xiaoqiang Zhang ◽  
Xuangang Yan

To prevent the leakage of image content, image encryption technology has received increasing attention. Most current algorithms are only suitable for the images of certain types and cannot update keys in a timely manner. To tackle such problems, we propose an adaptive chaotic image encryption algorithm based on RNA and pixel depth. Firstly, a novel chaotic system, two-dimensional improved Logistic-adjusted-Sine map is designed. Then, we propose a three-dimensional adaptive Arnold transform for scrambling. Secondly, keys are generated by the hash values of the plain image and current time to achieve one-image, one-key, and one-time pad simultaneously. Thirdly, we build a pre-permuted RNA cube for 3D adaptive scrambling by pixel depth, chaotic sequences, and adaptive RNA coding. Finally, selective diffusion combined with pixel depth and RNA operations is performed, in which the RNA operators are determined by the chemical structure and properties of amino acids. Pixel depth is integrated into the whole procedure of parameter generation, scrambling, and diffusion. Experiments and algorithm analyses show that our algorithm has strong security, desirable performance, and a broader scope of application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Ying-Qian Zhang ◽  
Xin He ◽  
Xing-Yuan Wang

AbstractIn this paper, a novel image encryption algorithm based on the Once Forward Long Short Term Memory Structure (OF-LSTMS) and the Two-Dimensional Coupled Map Lattice (2DCML) fractional-order chaotic system is proposed. The original image is divided into several image blocks, each of which is input into the OF-LSTMS as a pixel sub-sequence. According to the chaotic sequences generated by the 2DCML fractional-order chaotic system, the parameters of the input gate, output gate and memory unit of the OF-LSTMS are initialized, and the pixel positions are changed at the same time of changing the pixel values, achieving the synchronization of permutation and diffusion operations, which greatly improves the efficiency of image encryption and reduces the time consumption. In addition the 2DCML fractional-order chaotic system has better chaotic ergodicity and the values of chaotic sequences are larger than the traditional chaotic system. Therefore, it is very suitable to image encryption. Many simulation results show that the proposed scheme has higher security and efficiency comparing with previous schemes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xuncai Zhang ◽  
Lingfei Wang ◽  
Ying Niu ◽  
Guangzhao Cui ◽  
Shengtao Geng

In this paper, an image encryption algorithm based on the H-fractal and dynamic self-invertible matrix is proposed. The H-fractal diffusion encryption method is firstly used in this encryption algorithm. This method crosses the pixels at both ends of the H-fractal, and it can enrich the means of pixel diffusion. The encryption algorithm we propose uses the Lorenz hyperchaotic system to generate pseudorandom sequences for pixel location scrambling and self-invertible matrix construction to scramble and diffuse images. To link the cipher image with the original image, the initial values of the Lorenz hyperchaotic system are determined using the original image, and it can enhance the security of the encryption algorithm. The security analysis shows that this algorithm is easy to implement. It has a large key space and strong key sensitivity and can effectively resist plaintext attacks.


Sign in / Sign up

Export Citation Format

Share Document