scholarly journals Moringa oleiferaSeeds Attenuate Vascular Oxidative and Nitrosative Stresses in Spontaneously Hypertensive Rats

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Joseph Iharinjaka Randriamboavonjy ◽  
Marc Rio ◽  
Pierre Pacaud ◽  
Gervaise Loirand ◽  
Angela Tesse

Moringa oleifera(MOI) is a tree currently used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including arterial hypertension. We previously described a cardiac protective role of a treatment with MOI seeds in spontaneously hypertensive rats (SHR). Here, we investigated the effects of this treatment on oxidative and nitrosative vascular stresses in SHR, with normotensive Wistar Kyoto rats used as controls. Oxidative and nitrosative stresses detected in SHR aortas using the fluorescent dye dihydroethidine and protein nitrotyrosine staining were reduced in MOI-treated SHR aortas. This was associated with a decrease of free 8-isoprostane circulating level, vascular p22phoxand p47phoxexpressions, and SOD2 upregulation. Moreover, circulating nitrites and C-reactive protein, increased in SHR, were both reduced in SHR receiving MOI. This was associated to decrease iNOS and NF-κB protein expressions after MOI treatment. In functional studies, the endothelium-dependent carbachol-induced relaxation was improved in MOI-treated SHR resistance arteries. Oral administration of MOI seeds demonstrates vascular antioxidant, anti-inflammatory, and endothelial protective effects in SHR. Our data support the use of MOI seeds in diet against cardiovascular disorders associated with oxidative stress and inflammation such as hypertension, scientifically validating the use of these seeds in Malagasy traditional medicine.

1987 ◽  
Vol 65 (2) ◽  
pp. 230-235 ◽  
Author(s):  
C. Subah Packer ◽  
Newman L. Stephens

Prolonged isometric relaxation in hypertensive aortic and caudal arterial smooth muscle has been demonstrated; however, isobaric relaxation in resistance arteries is more pertinent to studies in hypertension. A comparative study of mesenteric arterial isobaric relaxation times was made using spontaneously hypertensive rats (SHR), normotensive Wistar–Kyoto rats (WKY), and MK-421 treated SHR (treatment commenced at 8 weeks of age and was maintained until sacrifice). Relaxation rates of vessels constricting against a range of pressures and achieving different degrees of narrowing or changes in circumference were analyzed. Comparisons were made between SHR, WKY, and MK-421 treated SHR arteries that had constricted from the same initial circumference and against the same magnitude of pressure. The SHR mesenteric arteries relaxed at a slower rate than did the WKY vessels. The normotensive MK-421 treated SHR showed the same prolonged relaxation rate as did the untreated SHR preparations. Thus the slower rate of relaxation in SHR arteries does not appear to be a consequence of the hypertension. Such prolonged time for narrowing would function to increase the average peripheral resistance and thus may contribute to the initiation and maintenance of increased blood pressure.


1990 ◽  
Vol 258 (2) ◽  
pp. H445-H451 ◽  
Author(s):  
D. Diederich ◽  
Z. H. Yang ◽  
F. R. Buhler ◽  
T. F. Luscher

Endothelial cells modulate vascular tone by releasing endothelium-derived relaxing (EDRF) and contracting factors. An imbalance of these factors in hypertension could contribute to increased peripheral vascular resistance. Mesenteric resistance arteries of Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) were suspended in a myograph filled with physiological salt solution (37 degrees C; 95% O2–5% CO2). In WKY rings contracted with norepinephrine, acetylcholine (10(-9)-10(-4) M) evoked endothelium-dependent relaxations (88 +/- 2%, IC50 7.3 +/- 0.1; n = 31). Hemoglobin (10(-5) M) but not meclofenamate (10(-5) M) reversed the relaxations delineating EDRF as the mediator. Nitric oxide (3 X 10(-9)-10(-5) M) induced comparable relaxations as acetylcholine. In SHRSP, relaxations to acetylcholine but not those to nitric oxide were impaired (61 +/- 5%, IC50 greater than 6.6 +/- 0.4; n = 24; P less than 0.005). In SHRSP, meclofenamate but not the thromboxane synthetase inhibitor CGS 13080 normalized endothelium-dependent relaxations. Relaxations to sodium nitroprusside were enhanced in SHRSP both in rings with and without endothelium. Thus our results are compatible with the concept that endothelium-dependent relaxations in resistance arteries are mediated by nitric oxide. In SHRSP, endothelium-dependent relaxations are impaired because of a cyclooxygenase-dependent substance interfering with the release and/or action of EDRF.


1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 676
Author(s):  
Kunanya Masodsai ◽  
Yi-Yuan Lin ◽  
Sih-Yin Lin ◽  
Chia-Ting Su ◽  
Shin-Da Lee ◽  
...  

This study aimed to investigate the aging-related endothelial dysfunction mediated by insulin and insulin-like growth factor-1 (IGF-1) and antioxidant deficiency in hypertension. Male spontaneously hypertensive rats (SHRs) and age-matched normotensive Wistar–Kyoto rats (WKYs) were randomly divided into 24-week-old (younger) and 48-week-old (older) groups, respectively. The endothelial function was evaluated by the insulin- and IGF-1-mediated vasorelaxation of aortic rings via the organ bath system. Serum levels of nitric oxide (NO), malondialdehyde (MDA), catalase, and total antioxidant capacity (TAC) were examined. The insulin- and IGF-1-mediated vasorelaxation was significantly impaired in both 24- and 48-week-old SHRs compared with age-matched WKYs and was significantly worse in the 48-week-old SHR than the 24-week-old SHR. After pretreatments of phosphoinositide 3-kinase (PI3K) or NO synthase (NOS) inhibitors, the insulin- and IGF-1-mediated vasorelaxation became similar among four groups. The serum level of MDA was significantly increased, while the NO, catalase, and TAC were significantly reduced in the 48-week-old SHR compared with the 24-week-old SHR. This study demonstrated that the process of aging additively affected insulin- and IGF-1-mediated endothelial dysfunction in SHRs, which could be partly attributed to the reduced NO production and antioxidant deficiency.


Sign in / Sign up

Export Citation Format

Share Document