Prolonged isobaric relaxation time in small mesenteric arteries of the spontaneously hypertensive rat

1987 ◽  
Vol 65 (2) ◽  
pp. 230-235 ◽  
Author(s):  
C. Subah Packer ◽  
Newman L. Stephens

Prolonged isometric relaxation in hypertensive aortic and caudal arterial smooth muscle has been demonstrated; however, isobaric relaxation in resistance arteries is more pertinent to studies in hypertension. A comparative study of mesenteric arterial isobaric relaxation times was made using spontaneously hypertensive rats (SHR), normotensive Wistar–Kyoto rats (WKY), and MK-421 treated SHR (treatment commenced at 8 weeks of age and was maintained until sacrifice). Relaxation rates of vessels constricting against a range of pressures and achieving different degrees of narrowing or changes in circumference were analyzed. Comparisons were made between SHR, WKY, and MK-421 treated SHR arteries that had constricted from the same initial circumference and against the same magnitude of pressure. The SHR mesenteric arteries relaxed at a slower rate than did the WKY vessels. The normotensive MK-421 treated SHR showed the same prolonged relaxation rate as did the untreated SHR preparations. Thus the slower rate of relaxation in SHR arteries does not appear to be a consequence of the hypertension. Such prolonged time for narrowing would function to increase the average peripheral resistance and thus may contribute to the initiation and maintenance of increased blood pressure.

1978 ◽  
Vol 235 (5) ◽  
pp. F409-F416 ◽  
Author(s):  
Gerald F. DiBona ◽  
Linda L. Rios

The mechanism of exaggerated diuresis and natriuresis was studied in spontaneously hypertensive rats (SHR) by renal clearance and micropuncture techniques. Control normotensive rats of the same age and sex [Wistar-Kyoto rats (WKY)] were also studied. During the hydropenic control and the volume-expansion experimental periods absolute and fractional water and sodium excretion were greater in SHR than in WKY. Although fractional and absolute water and sodium reabsorption were similar along the proximal convolution in SHR and WKY, fractional and absolute water reabsorption in Henle's loop was less in SHR than in WKY. Hydrostatic and colloid osmotic pressures in the cortical peritubular microvasculature were similar in WKY and SHR. Acute normalization of renal perfusion pressure by aortic constriction reversed the exaggerated diuresis and natriuresis in SHR by halving the filtered load of water and sodium; whole kidney and single nephron glomerular filtration rates and blood flows decreased by 50%. It is concluded that the exaggerated diuresis and natriuresis of the spontaneously hypertensive rat is caused by a decreased reabsorption in the loop of Henle. The mechanism of this decreased reabsorption in the loop of Henle cannot be explained by alterations in the measured physical forces in the renal cortical microvasculature. natriuresis; autoregulation; volume expansion Submitted on November 15, 1977 Accepted on June 7, 1978


1996 ◽  
Vol 270 (1) ◽  
pp. H1-H6 ◽  
Author(s):  
A. S. Izzard ◽  
S. J. Bund ◽  
A. M. Heagerty

To investigate myogenic tone during the developmental and established phases of hypertension, segments of distal (6th order) mesenteric arteries from spontaneously hypertensive rats (SHR) at 5 and 20 wk were isolated and pressurized in vitro and compared with vessels from age-matched Wistar-Kyoto (WKY) control animals. At 5 wk, tone was significantly enhanced in the SHR. At 20 wk tone was no longer significantly increased over a wide pressure range, although arteries from the SHR were able to maintain diameter at all pressures studied, whereas vessels from the WKY exhibited forced distension at 180 and 200 mmHg. From the relative slope of the pressure-diameter relationship (myogenic index), no increase in peak myogenic responsiveness was observed in arteries from the SHR at either time point. Passive lumen diameters were significantly decreased in arteries from SHR at both time points. From the total and passive midwall circumference-tension relationships, total tension was observed at a reduced midwall circumference in the SHR, but increased absolute levels of total tension were not observed. The normalized midwall circumference-tension relationships in the two strains revealed increased total tension due to active tension development at a reduced normalized circumference at 5 wk in the SHR. At 20 wk the normalized midwall circumference-tension relationships in the two strains were identical. These results demonstrate that myogenic tone in mesenteric arteries is enhanced during the development of hypertension but not when it is established, except at high intraluminal pressures.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Joseph Iharinjaka Randriamboavonjy ◽  
Marc Rio ◽  
Pierre Pacaud ◽  
Gervaise Loirand ◽  
Angela Tesse

Moringa oleifera(MOI) is a tree currently used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including arterial hypertension. We previously described a cardiac protective role of a treatment with MOI seeds in spontaneously hypertensive rats (SHR). Here, we investigated the effects of this treatment on oxidative and nitrosative vascular stresses in SHR, with normotensive Wistar Kyoto rats used as controls. Oxidative and nitrosative stresses detected in SHR aortas using the fluorescent dye dihydroethidine and protein nitrotyrosine staining were reduced in MOI-treated SHR aortas. This was associated with a decrease of free 8-isoprostane circulating level, vascular p22phoxand p47phoxexpressions, and SOD2 upregulation. Moreover, circulating nitrites and C-reactive protein, increased in SHR, were both reduced in SHR receiving MOI. This was associated to decrease iNOS and NF-κB protein expressions after MOI treatment. In functional studies, the endothelium-dependent carbachol-induced relaxation was improved in MOI-treated SHR resistance arteries. Oral administration of MOI seeds demonstrates vascular antioxidant, anti-inflammatory, and endothelial protective effects in SHR. Our data support the use of MOI seeds in diet against cardiovascular disorders associated with oxidative stress and inflammation such as hypertension, scientifically validating the use of these seeds in Malagasy traditional medicine.


1995 ◽  
Vol 6 (4) ◽  
pp. 1209-1215
Author(s):  
Q C Meng ◽  
J Durand ◽  
Y F Chen ◽  
S Oparil

This study used a novel simple method for the extraction, separation, identification, and quantitation of angiotensin-like immunoactivity from tissue to examine the effects of altering dietary NaCl intake on intrarenal angiotensin I, II, and III levels in salt-sensitive, spontaneously hypertensive rats, salt-resistant Wistar-Kyoto rats, and Sprague-Dawley rats. Seven-week-old male spontaneously hypertensive rats, Wistar-Kyoto rats, and Sprague-Dawley rats were assigned randomly to a diet containing either 8% (high) or 1% (basal) salt and were maintained on these diets for 3 wk. Rats were then decapitated without prior anesthesia, and kidneys were rapidly (< 30 s) removed, snap frozen in liquid nitrogen, and stored at -80 degrees C. Frozen tissue was extracted in 2 M acetic acid and then subjected to solid-phase extraction with the cation exchange resin AG 50W X4. Angiotensin peptides were separated by reversed-phase high-performance liquid chromatography on a phenyl silica gel column with an eluent consisting of 20% acetonitrile in 0.1 M ammonium phosphate buffer, pH 4.9, and quantitated by radioimmunoassay. The elution of standard peptides under isocratic conditions revealed clear resolution of angiotensin I, II, and III and the (1-7) and (3-8) peptides. Recoveries of both labeled and unlabeled angiotensin peptide standards from the extraction step were > 90%. Renal angiotensin II stores were significantly higher in spontaneously hypertensive rats than in Wistar-Kyoto or Sprague-Dawley rats, independent of diet. Renal angiotensin II and III were further suppressed during dietary salt supplementation in both salt-resistant strains but not in the spontaneously hypertensive rat. These findings are consistent with an enhanced (compared with Wistar-Kyoto and Sprague-Dawley rats) role for angiotensin II in the kidney of the salt-sensitive, spontaneously hypertensive rat, particularly under conditions of dietary salt supplementation.


1977 ◽  
Vol 233 (4) ◽  
pp. H493-H499 ◽  
Author(s):  
C. J. Limas ◽  
C. Limas

Vascular prostaglandin synthesis was studied in tissues (aorta and inferior vena cava) obtained from spontaneously hypertensive rats (SHRs) of the Aoki-Okamoto strain and age-matched Wistar-Kyoto (WKYs) controls. PGE2 synthesis in aortas from SHRs was significantly enhanced at 10 wk of age (5.3 +/- 0.7 nmol PGE2/mg protein per 10 min vs. 1.9 +/- 0.03 nmol PGE2/mg protein per min in the WKYs, P less than 0.001) and increased progressively until 22 wk of age; PGE2alpha synthesis in SHRs was not significantly different from WKYs. In the venous walls from SHRs, PGF2alpha was the prostaglandin predominantly synthesized (7.1 +/- 0.6 vs. 1.9 +/- 0.05 nmol PGE2alpha/mg protein per 10 min in the WKY controls, P less than 0.01). The activities of 15-hydroxy prostaglandin dehydrogenase and PGE 9-ketoreductase were also compared in the two groups of animals. The only difference detected was a significant increase in venous PGE 9-ketoreductase of SHR's (7.3 +/- 0.06 vs. 4.8 +/- 0.04 nmol PGF2alpha/mg per min, P less than 0.01). The results suggest that increased vascular synthesis of prostaglandins accompanies the development of spontaneous hypertension and may serve to attenuate the effects of blood pressure elevation.


1987 ◽  
Vol 72 (4) ◽  
pp. 515-518 ◽  
Author(s):  
A. Berthelot ◽  
C. Luthringer ◽  
A. Exinger

1. Total plasma concentrations of bromine, copper, rubidium, selenium and zinc were measured in spontaneously hypertensive rats (SHR) and Wistar–Kyoto rats (WKY) of 5–20 weeks of age, using an X-ray fluorescence spectrometry technique. 2. Although plasma levels of bromine, rubidium, selenium and zinc varied at different ages when comparing SHR and WKY, their general evolution was similar. Copper levels increased more in SHR than in WKY. 3. These perturbations in trace element levels could perhaps participate in the establishment of hypertension in SHR, but could also be due to genetic differences between the strains, unrelated to the development of hypertension.


1993 ◽  
Vol 85 (5) ◽  
pp. 585-591 ◽  
Author(s):  
Robert I Norman ◽  
Navtej Achall

1. The relationships between systolic blood pressure and altered erythrocyte Ca2+-Mg2+-ATPase activity and membrane microviscosity were assessed in membranes prepared from 20-week-old female Wistar-Kyoto normotensive and spontaneously hypertensive rats obtained from two different sources (Charles River and Harlan OLAC) and a second filial (F2) generation derived from a cross between Wistar-Kyoto rats and spontaneously hypertensive rats from one source (Charles River). 2. Spontaneously hypertensive rats from both sources had systolic blood pressures significantly higher than those of Wistar-Kyoto animals (P <0.05; 151 + 4 and 110 + 3 mmHg, Charles River; 155 + 4 and 122 + 4 mmHg, Harlan OLAC). The systolic blood pressures for the F2 rat population ranged between 73 and 168 mmHg. 3. Ca2+-Mg2+-ATPase activity was measured as ATP-dependent 45Ca2+ uptake into inside-out vesicles and microviscosity assessed by the measurement of polarization anisotropy of membrane incorporated fluorescent probes including 1,6-diphenyl-1,3,5-hexatriene, trimethylamino-1,6-diphenyl-1,3,5-hexatriene and a series of anthroyloxy fatty acids. 4. Contrary to previous studies, no relationship between adult systolic blood pressure and erythrocyte Ca2+-Mg2+-ATPase activity or general or localized membrane microviscosity was indicated by the comparison of spontaneously hypertensive and Wistar-Kyoto animals or in the analysis of the F2 rat population. 5. These results suggest that Ca2+-Mg2+-ATPase activity and membrane microviscosity are causally unrelated to hypertension in these animals. On the assumption that biophysical properties of the erythrocyte membrane reflect those of smooth muscle, our results suggest that membrane alteration does not play a significant role in the pathogenesis of hypertension in the spontaneously hypertensive rat model.


1984 ◽  
Vol 62 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Suzanne Desjardins-Giasson ◽  
Jolanta Gutkowska ◽  
Raul Garcia ◽  
Jacques Genest

The release of prostaglandin E2 (PGE2) and 6-ketoprostaglandin F1α (6-keto-PGF1α), the stable metabolite of prostacyclin (PGI2), by the perfused mesenteric arteries of renal and spontaneously hypertensive rats (SHR) have been measured. Unstimulated mesenteric arteries from two-kidney one-clip hypertensive rats (2K-1C) released 1.6 times as much PGE2 and 2.7 times as much 6-keto-PGF1α as those of control rats. The release of PGE2 by mesenteric arteries from one-kidney one-clip hypertensive rats (1K-1C) was not significantly different from that of uninephrectomized normotensive rats, but the release of 6-keto-PGF1α was 3.5 times higher in the former than in the latter. Norepinephrine (NE) induced a dose-related increase in perfusion pressure, in PGE2, and 6-keto-PGF1α release in all four groups. However, its effect on the release of PGE2 was more pronounced in 2K-1C than in sham-operated rats. There was no difference between 1K-1C and the uninephrectomized group. The effect of NE on the release of 6-keto-PGF1α was significantly higher for both renal hypertensive groups. These results indicate that the release of PGE2 is more dependent on the loss of renal mass than on hypertension, while the reverse applies to the release of 6-keto-PGF1α. Unstimulated mesenteric arteries from SHR released less PGE2 and less 6-keto-PGF1α than those of Wistar–Kyoto normotensive rats (WKY), but the release was not significantly different from Wistar rats. Under NE stimulation, WKY mesenteric arteries showed almost no increase in release of PGs. Compared with those of Wistar rats, SHR mesenteric arteries showed a greater pressor response to NE, a lower PGE2 release, and the same release of 6-keto-PGF1α. These findings reveal the difficulty of selecting an appropriate control group in studies involving SHR. We concluded that in renal hypertensive rats the specific increase of PGI2 release by arterial tissue may represent an important adaptive mechanism to the elevated blood pressure. However, this mechanism seems not to be involved in SHR.


Sign in / Sign up

Export Citation Format

Share Document