scholarly journals Balanced Transmissions Based Trajectories of Mobile Sink in Homogeneous Wireless Sensor Networks

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mariam Akbar ◽  
Nadeem Javaid ◽  
Wadood Abdul ◽  
Sanaa Ghouzali ◽  
Abid Khan ◽  
...  

Mobile Sink (MS) based routing strategies have been widely investigated to prolong the lifetime of Wireless Sensor Networks (WSNs). In this paper, we propose two schemes for data gathering in WSNs: (i) MS moves on random paths in the network (RMS) and (ii) the trajectory of MS is defined (DMS). In both the schemes, the network field is logically divided into small squares. The center point of each partitioned area is the sojourn location of the MS. We present three linear programming based models: (i) to maximize network lifetime, (ii) to minimize path loss, and (iii) to minimize end to end delay. Moreover, a geometric model is proposed to avoid redundancy while collecting information from the network nodes. Simulation results show that our proposed schemes perform better than the selected existing schemes in terms of the selected performance metrics.

2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


2020 ◽  
Vol 10 (12) ◽  
pp. 4374
Author(s):  
Seung-Hwan Kim ◽  
Jae-Woo Kim ◽  
Dong-Seong Kim

In this paper, the eight schemes for aircraft wireless sensor networks are investigated, which are single-hop array beamforming schemes (including analog beamforming (ABF), and digital beamforming (DBF)), non-cooperative schemes (including single-hop and multi-hop schemes), cooperative schemes (including amplify and forward (AF), decode and forward (DF)), and incremental cooperative schemes (incremental decode and forward (IDF), and incremental amplify and forward (IAF)). To set up the aircraft wireless communication environment, we design the aircraft channel model by referring to the experimental parameters of the ITU (International Telecommunication Union)-R M.2283, which is composed of path loss, shadowing fading, and multi-path fading channel responses. To evaluate the performance, the conditions energy consumption and throughput analysis are performed. Through simulation results, the incremental cooperative scheme outperformed by 66.8% better at spectral efficiency 2 than the DBF scheme in terms of the energy consumption metric. Whereas, in terms of throughput metric, overall SNR (signal-to-noise ratio) ranged from −20 to 30 dB the beamforming scheme had the best performance in which the beamforming scheme at SNR 0 dB achieved 85.4% better than the multi-hop scheme. Finally, in terms of normalized throughput metric in low SNR range between −20 and 1 dB the ABF scheme had the best performance over the others in which the ABF at SNR 0 dB achieved 75.4% better than the multi-hop scheme. Whereas, in high SNR range between 2 and 30 dB the IDF scheme had the best performance in which the IDF at SNR 10 dB achieved 62.2% better than the multi-hop scheme.


2014 ◽  
Vol 21 (1) ◽  
pp. 227-249 ◽  
Author(s):  
Charalampos Konstantopoulos ◽  
Basilis Mamalis ◽  
Grammati Pantziou ◽  
Vasileios Thanasias

2017 ◽  
Vol 30 (12) ◽  
pp. e3264 ◽  
Author(s):  
Farzad Tashtarian ◽  
Khosrow Sohraby ◽  
Amir Varasteh

2019 ◽  
Vol 32 (4) ◽  
pp. 224
Author(s):  
Zongyuan Han ◽  
Tianyun Shi ◽  
Xiaojun Lv ◽  
Xinchun Jia ◽  
Zhongying Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document