scholarly journals Analysis on Flow Induced Motion of Cylinders with Different Cross Sections and the Potential Capacity of Energy Transference from the Flow

2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Jijian Lian ◽  
Xiang Yan ◽  
Fang Liu ◽  
Jun Zhang

The energy in flow induced motion (FIM) was harnessed in recent years. In this study, the energy transfer ratio was derived to estimate the energy transference from the flow to the FIM. Then the FIM characteristics and energy transference of cylinders with different cross sections were experimentally investigated. The main findings are listed as follows. (a) Circular cylinders and diamond prisms both present a self-limited motion. The maximum amplitude ratio of circular cylinder is around 1~1.2 which is higher than that of diamond prism (0.4~0.5). (b) Triangle prisms and right square prisms present a self-unlimited motion. For triangle prism, amplitude ratio increases over 1.8; for right square prisms, amplitude ratio reaches 1.2. (c) The maximum transfer ratios of circular cylinder and triangle prism are 80% and 57%, respectively, which are much higher than those of other prisms, indicating that circular cylinder and triangle prism have better performances in energy transference. (d) The transfer ratio is strongly dependent on the damping and mass; higher damping or mass will promote a higher transfer ratio. (e) Beyond the critical transfer ratios, amplitude variation coefficients are around 10%~30% resulting in a better performance in stationarity.

Author(s):  
Hongrae Park ◽  
Michael M. Bernitsas ◽  
Eun Soo Kim

In the Marine Renewable Energy Laboratory of the University of Michigan, selectively located surface roughness has been designed successfully to suppress vortex-induced vibrations (VIV) of a single cylinder by 60% compared to a smooth cylinder. In this paper, suppression of flow-induced motions of two cylinders in tandem using surface roughness is studied experimentally by varying flow velocity and cylinder center-to-center spacing. Two identical rigid cylinders suspended by springs with their axes perpendicular to the flow are allowed one degree of freedom motion transverse to the flow direction. Surface roughness is applied in the form of four roughness strips helically placed around the cylinder. Results are compared to smooth cylinders also tested in this work. Amplitude ratio A/D, frequency ratio fosc/fn,water, and range of synchronization are measured. Regardless of the center-to-center cylinder distance, the amplitude response of the upstream smooth cylinder is similar to that of an isolated smooth cylinder. The wake from the upstream cylinder with roughness is narrower and longer and has significant influence on the amplitude of the downstream cylinder. The latter is reduced in the initial and upper branches while its range of VIV-synchronization is extended. Galloping is suppressed in both cylinders. In addition, the amplitude of the upstream rough cylinder and its range of synchronization increase with respect to the isolated rough cylinder.


Author(s):  
Wei Wu ◽  
Michael M. Bernitsas ◽  
Kevin Maki

Two-dimensional RANS equations with the Spalart-Allmaras turbulence model are used to simulate the flow and body kinematics of a rigid circular cylinder mounted on springs, transversely to a steady uniform flow in the high-lift, TrSL3 regime with 35,000<Re<130,000. Passive Turbulence Control (PTC) in the form of selectively distributed surface roughness is used to alter the cylinder Flow Induced Motion (FIM). Simulation is performed by using a solver based on the open source CFD tool OpenFOAM, which solves continuum mechanics problems with a finite volume discretization method. Roughness parameters of PTC are simulated modeling tests conducted in the Marine Renewable Energy Lab (MRELab) of the University of Michigan. The numerical tool is first tested on smooth cylinder in VIV and results are compared with available experimental measurements and RANS simulations. For the cylinder with PTC cases, the sandpaper grit (k) on the cylinder wall is modeled as a rough-wall boundary condition. Two sets of cases with different system parameters (spring constant, damping) are simulated and the results are compared with experimental data measured in the MRELab. The amplitude-ratio curve shows clearly three different branches, including the VIV initial and upper branches and a galloping branch, similar to those observed experimentally. Frequency ratio, vortex patterns, transitional behavior, and lift are also predicted well for PTC cylinders at such high Reynolds numbers.


2019 ◽  
Author(s):  
Jiawei He ◽  
Decheng Wan

Abstract This paper presents the investigation results of the VIM phenomenon, discloses the characteristics of the relative motions of a floating cylinder. Floating circular platforms present a large characteristic diameter associated with a large natural period of motions in the horizontal plane. In this paper, the VIM around floating circular cylinders, m* = 1.0, with very low aspect ratio, L/D = 2, as a motivation for better understanding the VIM of Spar platforms. In order to study vortex induced motions (VIM) response of a circular cylinder, numerical computations are carried out by our in-house VIM solver vim-FOAM-SJTU. In the CFD simulations the cylinder is moored with linear springs to provide a range of reduced velocities. The fluid domain is gridded by an unstructured grid. The boundary layer is modeled with a first boundary layer y+≈2. The focus is on the effect of reduced velocity on the VIM response. Free decay tests and vortex-induced motion (VIM) tests have been built numerically. The Fourier analysis of the motions have been performed in order to explain in figure-eight-type motion trajectory.


Author(s):  
Hongrae Park ◽  
Michael M. Bernitsas ◽  
Eun Soo Kim

In the Marine Renewable Energy Laboratory of the University of Michigan, selectively located surface roughness has been designed successfully to suppress vortex-induced vibrations of a single cylinder by 60% compared to a smooth cylinder. In this paper, suppression of flow-induced motions of two cylinders in tandem using surface roughness is studied experimentally by varying flow velocity and cylinder center-to-center spacing. The two identical cylinders are rigid, suspended by springs, and allowed to move transversely to the flow direction and their own axis. Surface roughness is applied in the form of four roughness strips helically placed around the cylinder. Results are compared to smooth cylinders also tested in this work. Amplitude ratio A/D, frequency ratio fosc/fn,water, and range of synchronization are measured. Regardless of the center-to-center cylinder distance, the amplitude response of the upstream smooth-cylinder is similar to that of the isolated smooth-cylinder. The wake from the upstream cylinder with roughness is narrower and longer and has significant influence on the amplitude of the downstream cylinder. The latter is reduced in the initial and upper branches while its range of VIV-synchronization is extended. In addition the amplitude of the upstream rough cylinder and its range of synchronization increase with respect to the isolated rough cylinder.


Author(s):  
Wei Wu ◽  
Michael M. Bernitsas ◽  
Kevin Maki

Two-dimensional (2D) Unsteady Reynolds-Averaged Navier–Stokes equations (URANS) equations with the Spalart–Allmaras turbulence model are used to simulate the flow and body kinematics of the transverse motion of spring-mounted circular cylinder. The flow is in the high-lift TrSL3 regime of a Reynolds number in the range 35,000 < Re < 130,000. Passive turbulence control (PTC) in the form of selectively distributed surface roughness is used to alter the cylinder flow induced motion (FIM). Simulation is performed using a solver based on the open source Computational Fluid Dynamics (CFD) tool OpenFOAM, which solves continuum mechanics problems with a finite-volume discretization method. Roughness parameters of PTC are chosen based on tests conducted in the Marine Renewable Energy Lab (MRELab) of the University of Michigan. The numerical tool is first tested on smooth cylinder in vortex-induced vibration (VIV) and results are compared with available experimental measurements and URANS simulations. For the cylinder with PTC cases, the sandpaper grit on the cylinder wall is modeled as a rough-wall boundary condition. Two sets of cases with different system parameters (spring, damping) are simulated and the results are compared with experimental data measured in the MRELab. The amplitude ratio curve shows clearly three different branches, including the VIV initial and upper branches, and a galloping branch. The numerical branches are similar to those observed experimentally. Frequency ratio, vortex patterns, transitional behavior, and lift are also predicted well for PTC cylinders at such high Reynolds numbers.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Nils Paul van Hinsberg

Abstract The aerodynamics of smooth and slightly rough prisms with square cross-sections and sharp edges is investigated through wind tunnel experiments. Mean and fluctuating forces, the mean pitch moment, Strouhal numbers, the mean surface pressures and the mean wake profiles in the mid-span cross-section of the prism are recorded simultaneously for Reynolds numbers between 1$$\times$$ × 10$$^{5}$$ 5 $$\le$$ ≤ Re$$_{D}$$ D $$\le$$ ≤ 1$$\times$$ × 10$$^{7}$$ 7 . For the smooth prism with $$k_s$$ k s /D = 4$$\times$$ × 10$$^{-5}$$ - 5 , tests were performed at three angles of incidence, i.e. $$\alpha$$ α = 0$$^{\circ }$$ ∘ , −22.5$$^{\circ }$$ ∘ and −45$$^{\circ }$$ ∘ , whereas only both “symmetric” angles were studied for its slightly rough counterpart with $$k_s$$ k s /D = 1$$\times$$ × 10$$^{-3}$$ - 3 . First-time experimental proof is given that, within the accuracy of the data, no significant variation with Reynolds number occurs for all mean and fluctuating aerodynamic coefficients of smooth square prisms up to Reynolds numbers as high as $$\mathcal {O}$$ O (10$$^{7}$$ 7 ). This Reynolds-number independent behaviour applies to the Strouhal number and the wake profile as well. In contrast to what is known from square prisms with rounded edges and circular cylinders, an increase in surface roughness height by a factor 25 on the current sharp-edged square prism does not lead to any notable effects on the surface boundary layer and thus on the prism’s aerodynamics. For both prisms, distinct changes in the aerostatics between the various angles of incidence are seen to take place though. Graphic abstract


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B295-B306 ◽  
Author(s):  
Alexander Duxbury ◽  
Don White ◽  
Claire Samson ◽  
Stephen A. Hall ◽  
James Wookey ◽  
...  

Cap rock integrity is an essential characteristic of any reservoir to be used for long-term [Formula: see text] storage. Seismic AVOA (amplitude variation with offset and azimuth) techniques have been applied to map HTI anisotropy near the cap rock of the Weyburn field in southeast Saskatchewan, Canada, with the purpose of identifying potential fracture zones that may compromise seal integrity. This analysis, supported by modeling, observes the top of the regional seal (Watrous Formation) to have low levels of HTI anisotropy, whereas the reservoir cap rock (composite Midale Evaporite and Ratcliffe Beds) contains isolated areas of high intensity anisotropy, which may be fracture-related. Properties of the fracture fill and hydraulic conductivity within the inferred fracture zones are not constrained using this technique. The predominant orientations of the observed anisotropy are parallel and normal to the direction of maximum horizontal stress (northeast–southwest) and agree closely with previous fracture studies on core samples from the reservoir. Anisotropy anomalies are observed to correlate spatially with salt dissolution structures in the cap rock and overlying horizons as interpreted from 3D seismic cross sections.


1999 ◽  
Vol 122 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Hiromu Hashimoto ◽  
Yasuhisa Hattori

The aim of this paper is to develop a general methodology for the optimum design of magnetic head sliders in improving the spacing characteristics between a slider and disk surface under static and dynamic operating conditions of hard disk drives and to present an application of the methodology to the IBM 3380-type slider design. To generate the optimal design variables, the objective function is defined as the weighted sum of the minimum spacing, the maximum difference in the spacing due to variation of the radial location of the head, and the maximum amplitude ratio of the slider motion. Slider rail width, taper length, taper angle, suspension position, and preload are selected as the design variables. Before the optimization of the head, the effects of these five design variables on the objective function are examined by a parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique, combining the direct search method and successive quadratic programming. From the obtained results, the effectiveness of optimum design on the spacing characteristics of magnetic heads is clarified. [S0742-4787(00)03701-2]


Sign in / Sign up

Export Citation Format

Share Document