scholarly journals Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Gabriele Ceccarelli ◽  
Rossella Presta ◽  
Laura Benedetti ◽  
Maria Gabriella Cusella De Angelis ◽  
Saturnino Marco Lupi ◽  
...  

Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

2021 ◽  
Vol 7 (3) ◽  
pp. 364
Author(s):  
Ya Ren ◽  
Xue Yang ◽  
Zhengjiang Ma ◽  
Xin Sun ◽  
Yuxin Zhang ◽  
...  

Organoids developed from pluripotent stem cells or adult stem cells are three-dimensional cell cultures possessing certain key characteristics of their organ counterparts, and they can mimic certain biological developmental processes of organs in vitro. Therefore, they have promising applications in drug screening, disease modeling, and regenerative repair of tissues and organs. However, the construction of organoids currently faces numerous challenges, such as breakthroughs in scale size, vascularization, better reproducibility, and precise architecture in time and space. Recently, the application of bioprinting has accelerated the process of organoid construction. In this review, we present current bioprinting techniques and the application of bioinks and summarize examples of successful organoid bioprinting. In the future, a multidisciplinary combination of developmental biology, disease pathology, cell biology, and materials science will aid in overcoming the obstacles pertaining to the bioprinting of organoids. The combination of bioprinting and organoids with a focus on structure and function can facilitate further development of real organs.


2012 ◽  
Vol 46 (2) ◽  
pp. 75-80
Author(s):  
Shamoli Bhattacharyya

ABSTRACT Mesenchymal stem cells have shown great promise as the source of adult stem cells for regenerative medicine. Present research efforts are directed at isolating these cells from various sources, growing them in vitro and maintaining their pluripotency as well as capacity for self renewal. It is crucial to identify the regulatory molecules which directly or indirectly control the proliferative status or influence the niche microenvironment. The main challenge is to understand the basic biology of the stem cells and manipulate them for further therapeutic applications. Considering their malignant potential, stem cells may be a double edged sword. While the benefits of these cells need to be harnessed judiciously, a significant amount of research is required before embarking on widespread use of this tool for the benefit of humanity. How to cite this article Bhattacharyya S. Advances and Applications in Stem Cell Biology. J Postgrad Med Edu Res 2012;46(2):75-80.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Bai ◽  
Lijun Li ◽  
Ni Kou ◽  
Yuwen Bai ◽  
Yaoyang Zhang ◽  
...  

Abstract Background Bone tissue engineering is a new concept bringing hope for the repair of large bone defects, which remains a major clinical challenge. The formation of vascularized bone is key for bone tissue engineering. Growth of specialized blood vessels termed type H is associated with bone formation. In vivo and in vitro studies have shown that low level laser therapy (LLLT) promotes angiogenesis, fracture healing, and osteogenic differentiation of stem cells by increasing reactive oxygen species (ROS). However, whether LLLT can couple angiogenesis and osteogenesis, and the underlying mechanisms during bone formation, remains largely unknown. Methods Mouse bone marrow mesenchymal stem cells (BMSCs) combined with biphasic calcium phosphate (BCP) grafts were implanted into C57BL/6 mice to evaluate the effects of LLLT on the specialized vessel subtypes and bone regeneration in vivo. Furthermore, human BMSCs and human umbilical vein endothelial cells (HUVECs) were co-cultured in vitro. The effects of LLLT on cell proliferation, angiogenesis, and osteogenesis were assessed. Results LLLT promoted the formation of blood vessels, collagen fibers, and bone tissue and also increased CD31hiEMCNhi-expressing type H vessels in mBMSC/BCP grafts implanted in mice. LLLT significantly increased both osteogenesis and angiogenesis, as well as related gene expression (HIF-1α, VEGF, TGF-β) of grafts in vivo and of co-cultured BMSCs/HUVECs in vitro. An increase or decrease of ROS induced by H2O2 or Vitamin C, respectively, resulted in an increase or decrease of HIF-1α, and a subsequent increase and decrease of VEGF and TGF-β in the co-culture system. The ROS accumulation induced by LLLT in the co-culture system was significantly decreased when HIF-1α was inhibited with DMBPA and was followed by decreased expression of VEGF and TGF-β. Conclusions LLLT enhanced vascularized bone regeneration by coupling angiogenesis and osteogenesis. ROS/HIF-1α was necessary for these effects of LLLT. LLLT triggered a ROS-dependent increase of HIF-1α, VEGF, and TGF-β and resulted in subsequent formation of type H vessels and osteogenic differentiation of mesenchymal stem cells. As ROS also was a target of HIF-1α, there may be a positive feedback loop between ROS and HIF-1α, which further amplified HIF-1α induction via the LLLT-mediated ROS increase. This study provided new insight into the effects of LLLT on vascularization and bone regeneration in bone tissue engineering.


2020 ◽  
Author(s):  
Shweta Gupta

Organoids are a new research tool derived from human pluripotent or adult stem cells or somatic cells in vitro to form small, self-organizing 3-dimensional structures that simulate many of the functions of native organs


2020 ◽  
Vol 72 (5) ◽  
pp. 715-730 ◽  
Author(s):  
Yamuna Mohanram ◽  
Jingying Zhang ◽  
Eleftherios Tsiridis ◽  
Xuebin B. Yang

Abstract Human bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.


2012 ◽  
Vol 4 (2) ◽  
pp. 59
Author(s):  
Yani Lina ◽  
Andi Wijaya

BACKGROUND: The potential use of stem cell-based therapies for repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of disease. Despite the advances, the availability of stem cells remaining a challenge for both scientist and clinicians in pursuing regenerative medicine. CONTENT: Subcutaneous human adipose tissue is an abundant and accessible cell source for applications in tissue engineering and regenerative medicine. Routinely, the adipose issue is digested with collagenase or related lytic enzymes to release a heterogeneous population for stromal vascular fraction (SVF) cells. The SVF cells can be used directly or can be cultured in plastic ware for selection and expansion of an adherent population known as adipose-derived stromal/stem cells (ASCs). Their potential in the ability to differentiate into adipogenic, osteogenic, chondrogenic and other mesenchymal lineages, as well in their other clinically useful properties, includes stimulation of angiogenesis and suppression of inflammation.SUMMARY: Adipose tissue is now recognized as an accessible, abundant and reliable site for the isolation of adult stem cels suitable for the application of tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models.KEYWORDS: adipose tissue, adult stem cells, regenerative medicine, mesenchymal stem cells


2017 ◽  
Vol 8 ◽  
pp. 204173141772546 ◽  
Author(s):  
Patricia A Redondo ◽  
Marina Pavlou ◽  
Marilena Loizidou ◽  
Umber Cheema

Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.


2020 ◽  
Vol 11 ◽  
pp. 204173142092691 ◽  
Author(s):  
Rui Dong ◽  
Yun Bai ◽  
Jingjin Dai ◽  
Moyuan Deng ◽  
Chunrong Zhao ◽  
...  

Recently, extracellular matrix-based tissue-engineered bone is a promising approach to repairing bone defects, and the seed cells are mostly mesenchymal stem cells. However, bone remodelling is a complex biological process, in which osteoclasts perform bone resorption and osteoblasts dominate bone formation. The interaction and coupling of these two kinds of cells is the key to bone repair. Therefore, the extracellular matrix secreted by the mesenchymal stem cells alone cannot mimic a complex bone regeneration microenvironment, and the addition of extracellular matrix by preosteoclasts may contribute as an effective strategy for bone regeneration. Here, we established the mesenchymal stem cell/preosteoclast extracellular matrix -based tissue-engineered bones and demonstrated that engineered-scaffolds based on mesenchymal stem cell/ preosteoclast extracellular matrix significantly enhanced osteogenesis in a 3 mm rat femur defect model compared with mesenchymal stem cell alone. The bioactive proteins released from the mesenchymal stem cell/ preosteoclast extracellular matrix based tissue-engineered bones also promoted the migration, adhesion, and osteogenic differentiation of mesenchymal stem cells in vitro. As for the mechanisms, the iTRAQ-labeled mass spectrometry was performed, and 608 differentially expressed proteins were found, including the IGFBP5 and CXCL12. Through in vitro studies, we proved that CXCL12 and IGFBP5 proteins, mainly released from the preosteoclasts, contributed to mesenchymal stem cells migration and osteogenic differentiation, respectively. Overall, our research, for the first time, introduce pre-osteoclast into the tissue engineering of bone and optimize the strategy of constructing extracellular matrix–based tissue-engineered bone using different cells to simulate the natural bone regeneration environment, which provides new sight for bone tissue engineering.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1660 ◽  
Author(s):  
Marcela Martín-del-Campo ◽  
José G. Sampedro ◽  
María Lisseth Flores-Cedillo ◽  
Raul Rosales-Ibañez ◽  
Luis Rojo

Nowadays, regenerative medicine has paid special attention to research (in vitro and in vivo) related to bone regeneration, specifically in the treatment of bone fractures or skeletal defects, which is rising worldwide and is continually demanding new developments in the use of stem cells, growth factors, membranes and scaffolds based on novel nanomaterials, and their applications in patients by using advanced tools from molecular biology and tissue engineering. Strontium (Sr) is an element that has been investigated in recent years for its participation in the process of remodeling and bone formation. Based on these antecedents, this is a review about the Strontium Folate (SrFO), a recently developed non-protein based bone-promoting agent with interest in medical and pharmaceutical fields due to its improved features in comparison to current therapies for bone diseases.


2010 ◽  
Vol 29 (1) ◽  
pp. 21-29 ◽  
Author(s):  
James E Trosko

Faced with the reality of our current methods of drug discovery and toxicity assessment of all chemicals is less than perfect, the Report, ‘‘Toxicity Testing in the 21 st Century: A Vision and a Strategy’’, posed a reality check on all scientific efforts to find new conceptual and technical approaches for being better predictors of potential human health effects. This Commentary is a challenge to both the current paradigms and techniques to test chemicals for their potential toxicities. While, clearly, our scientific understanding of the mechanisms of chemical-induced toxicity and of the pathogeneses of all human diseases are not complete, the state of scientific understanding seems not only sufficient to know what we are now doing is not sufficient, but that it is adequate enough to make a new paradigm and technological change. Basically, the challenge includes the opinion that human exposure to chemicals, that are associated with one or more health endpoints (birth defects, cardiovascular diseases, cancer, reproductive and neurological dysfunctions), is the result of epigenetic , not mutagenic or genotoxic, mechanisms. In addition, it is postulated that the adult human stem cell should be considered the ‘‘target’’ cell for the important chemical-induced health effects. To test this hypothesis that altering the quantity and quality of adult stem cells by chemical exposures during in utero, neonatal, adolescent, adult and geriatric phases of life can lead to health consequences, it is recommended that 3-D in vitro cultures be used on male and female human adult stem cells from a few major organs (e.g., heart, brain, liver, lung, kidney, breast, prostate ). Altered stem cell biology (e.g., increase or decrease in the stem cell numbers in specific organs; altered apoptotic and differentiation frequencies), as well as measured cell-cell communication, should be seriously considered as toxicity endpoints.


Sign in / Sign up

Export Citation Format

Share Document