scholarly journals Development and Validation of a Chromatography Method Using Tandem UV/Charged Aerosol Detector for Simultaneous Determination of Amlodipine Besylate and Olmesartan Medoxomil: Application to Drug-Excipient Compatibility Study

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ariadne M. Brondi ◽  
Jerusa S. Garcia ◽  
Marcello G. Trevisan

A study was carried out to investigate compatibility of amlodipine besylate and olmesartan medoxomil with a variety of pharmaceutical excipients. Both drugs are antihypertensive agents that can be administered alone, in monotherapy, or in pharmaceutical association. The studies were performed using binary and ternary mixtures, and samples were stored for 3 and 6 months at 40°C under 75% relative humidity and dry conditions. For this study, a method based on high-performance liquid chromatography (HPLC) was developed and validated for the simultaneous determination of amlodipine besylate and olmesartan medoxomil in samples from pharmaceutical preformulation studies using diode array detector (DAD) and charged aerosol detector (CAD). The runtime per sample was 10 min with retention time of 7.926 min and 4.408 min for amlodipine and olmesartan, respectively. The validation was performed according to ICH guidelines. The calibration curve presents linear dynamic range from 12 to 250 μg mL−1 for amlodipine and from 25 to 500 μg mL−1 for olmesartan with coefficient of determination (R2 ≥ 0.9908) while repeatability and reproducibility (expressed as relative standard deviation) were lower than 1.0%. The excipients such as corn starch, croscarmellose sodium, magnesium stearate, polyvinyl alcohol, talc, polyvinylpyrrolidone, lactose monohydrate, and polyethylene glycol showed potential incompatibilities after accelerated stability testing.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vaibhav S. Adhao ◽  
Suraj R. Chaudhari ◽  
Jaya P. Ambhore ◽  
Sunil Sangolkar ◽  
Raju R. Thenge ◽  
...  

Abstract Background Human immunodeficiency virus (HIV) causes severe life-threatening condition, i.e., AIDS. HIV destabilises an individual’s ability to prevent infection. Therefore, the combine medication lamivudine (LVD) and tenofovir disoproxil fumarate (TDF) are prescribed to suppress the amount of HIV infection in individual’s body; thus, the individual’s immune system could function properly. Consequently, the objective of present research work was to investigate robust and sensitive liquid chromatography avenue for simultaneous determination of lamivudine and tenofovir disoproxil fumarate in pure material and combined dosage form. Results The reversed-phase chromatographic separation has been performed through Hypersil BDS C18 column using solvent system composed of 10 mM potassium dihydrogen phosphate (pH 4.0): acetonitrile (60:40% v/v). The determination was executed at 30 oC at 1 mL/min rate for flow of solvent system through column. The eluents of column were monitored at 265 nm using Photodiode Array detector has revealed admirable retention times, i.e., 4.67 and 8.78 min for both drugs, respectively. The calibration curve demonstrated excellent linearity in the range of 10–50 μg/mL for lamivudine and tenofovir disoproxil fumarate with better determination coefficients was more than (r2 0.999). Conclusion The estimable method was effectively validated with respect to accuracy, precision, sensitive (limit of detection and limit of quantitation), robustness, ruggedness, and for selectivity and specificity. The value less than 2 for percentage relative standard deviation for accuracy, precision, robustness, and ruggedness satisfying the acceptance criteria as per procedure of International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.


2012 ◽  
Vol 48 (2) ◽  
pp. 315-323 ◽  
Author(s):  
Paulo Cesar Pires Rosa ◽  
Isabel Cristina Sales Fontes Jardim

A new, simple, fast, reproducible and sensitive reversed phase HPLC method, using a new stationary phase containing embedded urea polar groups, has been developed and validated for the simultaneous determination of clobutinol hydrochloride (CLO) and doxylamine succinate (DOX) in syrups. The determination was carried out on a C8 urea column (125 mm x 3.9 mm i.d., 5 µm particle size) synthetized at the Liquid Chomatography Laboratory (LabCrom) of the Chemistry Institute of Unicamp. The mobile phase consisted of a mixture of acetonitrile:methanol:phosphate buffer (pH 2.5) in the gradient mode. The diode array detector (DAD) was operated at 230 nm for CLO and 262 nm for DOX. The method showed adequate precision, with relative standard deviations (RSD) less than 1%. The presence of the excipients did not interfere in the results of the analysis. Accuracy was determined by adding standards of the drugs to a placebo and good recovery values were obtained. The analytical curves were linear (r² 0.9999 for CLO and 0.9998 for DOX) over a wide concentration range (2.4-336 µg mL-1 for CLO and 2.3-63 µg mL-1 for DOX). The solutions were stable for at least 72 hours at room temperature. The criteria for validation using the ICH guidelines were fulfilled.


2009 ◽  
Vol 92 (2) ◽  
pp. 404-409 ◽  
Author(s):  
Abdalla A Elshanawane ◽  
Samia M Mostafa ◽  
Mohamed S Elgawish

Abstract A high-performance liquid chromatographic method was developed for the simultaneous determination of 2 ternary mixtures containing amiloride hydrochloride, atenolol, hydrochlorothiazide, and chlorthalidone used in hypertension therapy. The use of cyanopropyl column results in satisfactory separation of both mixtures. The mobile phase consisted of 10 mM KH2PO4 buffer (pH 4.5) and methanol in a ratio of (75 25 v/v), at a flow rate of 1 mL/min. UV detector was operated at 275 nm. Calibration graphs were linear in the concentration ranges of 210, 20200, 10100, and 550 g/mL for amiloride hydrochloride, atenolol, hydrochlorothiazide, and chlorthalidone, respectively. Intraday and interday precision values (relative standard deviation) were <1.13 for mixture I (amiloride hydrochloride, atenolol, chlorthalidone), and <0.93 for mixture II (amiloride hydrochloride, atenolol, hydrochlorothiazide). The method was successfully applied for the determination of the 2 combinations in laboratory-prepared mixtures and commercial pharmaceutical formulation with high accuracy and precision. Statistical comparison of the results with those of the published methods showed excellent agreement and indicates no significant difference between them.


2019 ◽  
Vol 52 (11) ◽  
pp. 959-964 ◽  
Author(s):  
Jayshri R. Kerai ◽  
Amitkumar J. Vyas ◽  
Bhupatsinh Vihol ◽  
Parth Patel ◽  
Ashok Patel

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Shilan A. Omer ◽  
Nabil A. Fakhre

Three simple precise and accurate spectrophotometric methods are developed for simultaneous determination of ternary mixtures of carboxin, chlorpyrifos, and tebuconazole residues in cabbage grown in the experimental field. The first method is a double divisor-ratio spectra derivative that relies on the derivative of ratio spectra and attained through dividing the absorption spectra of the ternary mixture by the sum of standard spectrum of a mixture of two from three components, using methanol as a solvent and measuring CAR at 242 nm, CHL at 236 nm, 276 nm, and 300 nm, and TEB at 226 nm. The second method is a successive derivative of ratio spectra which determined CAR at 256 nm and 258 nm, CHL at 290 nm and 292 nm, and TEB at 226 nm and 228 nm. The third method is a mean centering of ratio spectra where CAR, CHL, and TEB were measured at 306 nm, 280 nm, and 240 nm, respectively. These procedures do not involve any previous separation. The extraction of analytes was carried out by using acetonitrile, and the procedure of purification was fulfilled by dispersive solid-phase extraction with a primary-secondary amine (PSA). The proposed methods showed excellent linearity range for three spectrophotometric methods over the concentration ranges of 1–30 μg/mL, 1–50 μg/mL, and 1–45 μg/mL for carboxin, chlorpyrifos, and tebuconazole, respectively. The analytical characteristics such as detection limit, determination limit, relative standard deviation, and accuracy of the three methods were performed. The limits of detection were in the range of 0.153–0.260 μg/mL for carboxin, 0.137–0.272 μg/mL for chlorpyrifos, and 0.109–0.205 μg/mL for tebuconazole with limits of quantification lower than 0.790, 0.824, and 0.621 μg/mL for CAR, CHL, and TEB, respectively. The recoveries ranged from 87.02% to 94.53% for carboxin, 92.32% to 108.53% for chlorpyrifos, and 87.19% to 98.00% for tebuconazole with relative standard deviations less than 5.91%, 5.99%, and 5.53% in all instances for carboxin, chlorpyrifos, and tebuconazole, respectively. The results obtained from the proposed methods were compared statistically by using one-way ANOVA, and the results revealed that there were no significant differences between three different spectrophotometric methods. The suggested methods can be applied with great success to the simultaneous estimation of carboxin, chlorpyrifos, and tebuconazole residues in cabbage samples.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 40 ◽  
Author(s):  
Kang Ma ◽  
Xiaojia Li ◽  
Yiwen Zhang ◽  
Fei Liu

In China, white spirit is not only an alcoholic drink but also a cultural symbol. A novel and accurate method for simultaneously determining nine sweeteners (most authorized for use in China) in white spirits by ultrahigh performance liquid chromatography (UHPLC) with a photo-diode array detector (PDA) and charged aerosol detector (CAD) was developed. The sweeteners were acesulfame, alitame, aspartame, dulcin, neotame, neohesperidine dihydrochalcone, saccharin, sodium cyclamate, and sucralose. The sweeteners were separated within 16 min using a BEH C18 column and linear gradient-elution program. The optimized method allowed low concentrations (micrograms per gram) of sweeteners to be simultaneously detected. The CAD gave good linearities (correlation coefficients > 0.9936) for all analytes at concentrations of 0.5 to 50.0 μg/g. The limits of detection were 0.16 to 0.77 μg/g. Acesulfame, dulcin, neohesperidine dihydrochalcone, and saccharin were determined using the PDA detector, which gave correlation coefficients > 0.9994 and limits of detection of 0.16 to 0.22 μg/g. The recoveries were 95.1% to 104.9% and the relative standard deviations were 1.6% to 3.8%. The UHPLC-PDA-CAD method is more convenient and cheaper than LC-MS/MS methods. The method was successfully used in a major project called “Special Action against Counterfeit and Shoddy white spirits” and to monitor risks posed by white spirits in China.


Author(s):  
Sergey V. Andreev ◽  
Evgeny S. Belyaev ◽  
Anna O. Ivanova ◽  
Elvina A. Novikova ◽  
Anatoly A. Ishchenko

Chlorhexidine digluconate has been widely used in lenticular compositions, skin antiseptics and other ready-to-use disinfectants. This is due to its low toxicity, as well as a wide range of antimicrobial effects. A commonly used method for the analysis of commercially available chlorhexidine digluconate (usually available as a 20% aqueous solution) is high-performance liquid chromatography. In this article, the main methods of analysis used to determine chlorhexidine digluconate in disinfectants and skin antiseptics are considered. A new simple technique for the determination of chlorhexidine digluconate in technical products and disinfectants based on acid-base titration in alcohol-ketone is developed. It is shown that in this medium hydrochloric acid interacts with two nitrogen atoms of the chlorhexidine digluconate molecule. The end point of the titration is established by the transition of the blue color to green in the presence of bromophenol blue. The range of measured concentrations is from 0.1 to 2.0 mass%. The relative error of the method is 2.5% with the confidence probability P = 0.95. A comparison of the diode array detector and the charged aerosol detector for the determination of chlorhexidine digluconate has been performed. It is shown that a charged aerosol detector can be used to analyze chlorhexidine digluconate in cases where it is difficult to analyze with an ultraviolet or diode array detector. However, the sensitivity of the detector of charged aerosols is significantly lower than that of the diode matrix, and the linearity range is smaller. All methods were tested on model samples, as well as on samples of disinfectants, skin antiseptics, soaps and wipes with antibacterial effect.


Author(s):  
Sohila M Elonsy ◽  
Fawzy A El Yazbi ◽  
Rasha A Shaalan ◽  
Hytham M Ahmed ◽  
Tarek S Belal

Abstract Objective Two chromatographic methods were described for simultaneous determination of the antihypertensive drugs amlodipine besylate (AML) and bisoprolol fumarate (BIS). Methods Method I applies micellar electrokinetic capillary chromatography using a deactivated fused silica capillary (25 cm effective length × 50 μm internal diameter). The background electrolyte consisted of 0.01 M borate buffer (pH 9.2) containing 0.025 M sodium dodecyl sulphate and methanol in the ratio of 80:20 (v/v). Valsartan (VAL) was used as an internal standard. Diode array detector was set at 238, 224, and 210 nm for measuring AML, BIS, and VAL, respectively. Method II involves using ultra-performance liquid chromatography with fluorescence detection. Zorbax SB-C8 column (2.1 × 100 mm, 1.8 μm particle size) was used with isocratic elution of the mobile phase composed of 0.1% trifluoroacetic acid, acetonitrile, and methanol in the ratio of 55:35:10 (v/v) at a flow rate of 0.6 mL/min. Fluorescence detection was done using excitation wavelengths 230 and 370 nm and emission wavelengths 305 and 450 nm for BIS and AML, respectively. Validation parameters were carefully studied including linearity, ranges, precision, accuracy, robustness, detection, and quantification limits. Results Method I showed good linearity over the range 10–100 μg/mL for both dugs. Method II’s linear ranges were 0.001–0.1 and 0.02–1 µg/mL for BIS and AML, respectively. Conclusion The proposed methods were successfully validated and applied for assay of the studied drugs in their fixed-dose combination tablets. Highlights To the best of our knowledge, this study suggests the first electro-chromatographic and LC with fluorescence detection methods for simultaneous determination of amlodipine and bisoprolol.


2020 ◽  
Vol 10 (16) ◽  
pp. 5482
Author(s):  
Beom-Geun Jo ◽  
Kyung-Hwa Kang ◽  
Min Hye Yang

Haedoksamul-tang (HST) is a traditional medical prescription comprising eight medicinal herbs: Angelica gigas, Cnidium officinale, Coptis japonica, Gardenia jasminoides, Paeonia lactiflora, Phellodendron amurense, Rehmannia glutinosa, and Scutellaria baicalensis. HST is used to treat blood circulation disorders and has anti-inflammatory, hemostatic, and anticonvulsant effects. In this study, a high-performance liquid chromatography/photodiode array detector (HPLC–PDA) method was developed and validated for the simultaneous determination of four marker compounds in HST, namely, berberine, palmatine, geniposide, and paeoniflorin. Four standard solutions and HST sample solutions were analyzed using a reverse-phase SunFire®C18 column (4.6 × 250 mm, 5 μm) using a 0.05% aqueous formic acid/methanol gradient. The column temperature, flow rate, injection volume, and wavelengths used were 28 ± 2 ℃, 1.0 mL/min, 10.0 μL, and 230 nm and 240 nm, respectively. Calibration curves of the four marker compounds showed good linearity (r2 ≥ 0.9994), and limits of detection (LODs) and quantification (LOQs) were in the ranges 0.131–0.296 μg/mL and 0.398–0.898 μg/mL, respectively. Ranges of intra- and inter-day precisions and accuracies values were 96.74–102.53% and 97.95–100.83%, respectively, and relative standard deviation (RSD) values were all <4%. Recoveries averaged 92.33–116.72% with RSD values <5%. Quantitative analysis for the four marker compounds showed geniposide (10.77 mg/g) was most abundant in HST.


Sign in / Sign up

Export Citation Format

Share Document