scholarly journals The Patch-Levy-Based Bees Algorithm Applied to Dynamic Optimization Problems

2017 ◽  
Vol 2017 ◽  
pp. 1-27 ◽  
Author(s):  
Wasim A. Hussein ◽  
Siti Norul Huda Sheikh Abdullah ◽  
Shahnorbanun Sahran

Many real-world optimization problems are actually of dynamic nature. These problems change over time in terms of the objective function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA), on solving dynamic problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.

2008 ◽  
Vol 16 (3) ◽  
pp. 385-416 ◽  
Author(s):  
Shengxiang Yang

In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.


Author(s):  
Jianqing Lin ◽  
Cheng He ◽  
Ran Cheng

AbstractVarious works have been proposed to solve expensive multiobjective optimization problems (EMOPs) using surrogate-assisted evolutionary algorithms (SAEAs) in recent decades. However, most existing methods focus on EMOPs with less than 30 decision variables, since a large number of training samples are required to build an accurate surrogate model for high-dimensional EMOPs, which is unrealistic for expensive multiobjective optimization. To address this issue, we propose an SAEA with an adaptive dropout mechanism. Specifically, this mechanism takes advantage of the statistical differences between different solution sets in the decision space to guide the selection of some crucial decision variables. A new infill criterion is then proposed to optimize the selected decision variables with the assistance of surrogate models. Moreover, the optimized decision variables are extended to new full-length solutions, and then the new candidate solutions are evaluated using expensive functions to update the archive. The proposed algorithm is tested on different benchmark problems with up to 200 decision variables compared to some state-of-the-art SAEAs. The experimental results have demonstrated the promising performance and computational efficiency of the proposed algorithm in high-dimensional expensive multiobjective optimization.


Author(s):  
Yajie Zhang ◽  
Ye Tian ◽  
Xingyi Zhang

AbstractSparse large-scale multi-objective optimization problems (LSMOPs) widely exist in real-world applications, which have the properties of involving a large number of decision variables and sparse Pareto optimal solutions, i.e., most decision variables of these solutions are zero. In recent years, sparse LSMOPs have attracted increasing attentions in the evolutionary computation community. However, all the recently tailored algorithms for sparse LSMOPs put the sparsity detection and maintenance in the first place, where the nonzero variables can hardly be optimized sufficiently within a limited budget of function evaluations. To address this issue, this paper proposes to enhance the connection between real variables and binary variables within the two-layer encoding scheme with the assistance of variable grouping techniques. In this way, more efforts can be devoted to the real part of nonzero variables, achieving the balance between sparsity maintenance and variable optimization. According to the experimental results on eight benchmark problems and three real-world applications, the proposed algorithm is superior over existing state-of-the-art evolutionary algorithms for sparse LSMOPs.


2016 ◽  
Vol 38 (4) ◽  
pp. 307-317
Author(s):  
Pham Hoang Anh

In this paper, the optimal sizing of truss structures is solved using a novel evolutionary-based optimization algorithm. The efficiency of the proposed method lies in the combination of global search and local search, in which the global move is applied for a set of random solutions whereas the local move is performed on the other solutions in the search population. Three truss sizing benchmark problems with discrete variables are used to examine the performance of the proposed algorithm. Objective functions of the optimization problems are minimum weights of the whole truss structures and constraints are stress in members and displacement at nodes. Here, the constraints and objective function are treated separately so that both function and constraint evaluations can be saved. The results show that the new algorithm can find optimal solution effectively and it is competitive with some recent metaheuristic algorithms in terms of number of structural analyses required.


2021 ◽  
Author(s):  
Zuanjia Xie ◽  
Chunliang Zhang ◽  
Haibin Ouyang ◽  
Steven Li ◽  
Liqun Gao

Abstract Jaya algorithm is an advanced optimization algorithm, which has been applied to many real-world optimization problems. Jaya algorithm has better performance in some optimization field. However, Jaya algorithm exploration capability is not better. In order to enhance exploration capability of the Jaya algorithm, a self-adaptively commensal learning-based Jaya algorithm with multi-populations (Jaya-SCLMP) is presented in this paper. In Jaya-SCLMP, a commensal learning strategy is used to increase the probability of finding the global optimum, in which the person history best and worst information is used to explore new solution area. Moreover, a multi-populations strategy based on Gaussian distribution scheme and learning dictionary is utilized to enhance the exploration capability, meanwhile every sub-population employed three Gaussian distributions at each generation, roulette wheel selection is employed to choose a scheme based on learning dictionary. The performance of Jaya-SCLMP is evaluated based on 28 CEC 2013 unconstrained benchmark problems. In addition, three reliability problems, i.e. complex (bridge) system, series system and series-parallel system are selected. Compared with several Jaya variants and several state-of-the-art other algorithms, the experimental results reveal that Jaya-SCLMP is effective.


Author(s):  
Al-khafaji Amen

<span lang="EN-US">Maintaining population diversity is the most notable challenge in solving dynamic optimization problems (DOPs). Therefore, the objective of an efficient dynamic optimization algorithm is to track the optimum in these uncertain environments, and to locate the best solution. In this work, we propose a framework that is based on multi operators embedded in genetic algorithms (GA) and these operators are heuristic and arithmetic crossovers operators. The rationale behind this is to address the convergence problem and to maintain the diversity. The performance of the proposed framework is tested on the well-known dynamic optimization functions i.e., OneMax, Plateau, Royal Road and Deceptive. Empirical results show the superiority of the proposed algorithm when compared to state-of-the-art algorithms from the literature.</span>


2015 ◽  
Vol 23 (1) ◽  
pp. 69-100 ◽  
Author(s):  
Handing Wang ◽  
Licheng Jiao ◽  
Ronghua Shang ◽  
Shan He ◽  
Fang Liu

There can be a complicated mapping relation between decision variables and objective functions in multi-objective optimization problems (MOPs). It is uncommon that decision variables influence objective functions equally. Decision variables act differently in different objective functions. Hence, often, the mapping relation is unbalanced, which causes some redundancy during the search in a decision space. In response to this scenario, we propose a novel memetic (multi-objective) optimization strategy based on dimension reduction in decision space (DRMOS). DRMOS firstly analyzes the mapping relation between decision variables and objective functions. Then, it reduces the dimension of the search space by dividing the decision space into several subspaces according to the obtained relation. Finally, it improves the population by the memetic local search strategies in these decision subspaces separately. Further, DRMOS has good portability to other multi-objective evolutionary algorithms (MOEAs); that is, it is easily compatible with existing MOEAs. In order to evaluate its performance, we embed DRMOS in several state of the art MOEAs to facilitate our experiments. The results show that DRMOS has the advantage in terms of convergence speed, diversity maintenance, and portability when solving MOPs with an unbalanced mapping relation between decision variables and objective functions.


2018 ◽  
Vol 17 (04) ◽  
pp. 1007-1046 ◽  
Author(s):  
Mohsen Moradi ◽  
Samad Nejatian ◽  
Hamid Parvin ◽  
Vahideh Rezaie

The swarm intelligence optimization algorithms are used widely in static purposes and applications. They solve the static optimization problems successfully. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments as well. The dynamic optimization problems indicate the ones whose solutions change over time. The artificial bee colony algorithm is one of the swarm intelligence optimization algorithms. In this study, a clustering and memory-based chaotic artificial bee colony algorithm, denoted by CMCABC, has been proposed for solving the dynamic optimization problems. A chaotic system has a more accurate prediction for future in the real-world applications compared to a random system, because in the real-world chaotic behaviors have emerged, but random behaviors havenot been observed. In the proposed CMCABC method, explicit memory has been used to save the previous good solutions which are not very old. Maintaining diversity in the dynamic environments is one of the fundamental challenges while solving the dynamic optimization problems. Using clustering technique in the proposed method can well maintain the diversity of the problem environment. The proposed CMCABC method has been tested on the moving peaks benchmark (MPB). The MPB is a good simulator to evaluate the efficiency of the optimization algorithms in dynamic environments. The experimental results on the MPB reveal the appropriate efficiency of the proposed CMCABC method compared to the other state-of-the-art methods in solving dynamic optimization problems.


2022 ◽  
Vol 54 (8) ◽  
pp. 1-34
Author(s):  
Ye Tian ◽  
Langchun Si ◽  
Xingyi Zhang ◽  
Ran Cheng ◽  
Cheng He ◽  
...  

Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in solving various optimization problems, but their performance may deteriorate drastically when tackling problems containing a large number of decision variables. In recent years, much effort been devoted to addressing the challenges brought by large-scale multi-objective optimization problems. This article presents a comprehensive survey of stat-of-the-art MOEAs for solving large-scale multi-objective optimization problems. We start with a categorization of these MOEAs into decision variable grouping based, decision space reduction based, and novel search strategy based MOEAs, discussing their strengths and weaknesses. Then, we review the benchmark problems for performance assessment and a few important and emerging applications of MOEAs for large-scale multi-objective optimization. Last, we discuss some remaining challenges and future research directions of evolutionary large-scale multi-objective optimization.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850005
Author(s):  
Zhavat Sherinov ◽  
Ahmet Ünveren ◽  
Adnan Acan

In this paper, an improved imperialistic competitive algorithm is presented for real-valued optimization problems. A new method is introduced for the movement of colonies towards their imperialist, which is called assimilation. The proposed method uses Euclidean distance along with Pearson correlation coefficient as an operator for assimilating colonies with respect to their imperialists. Applications of the proposed algorithm to classical and recently published hard benchmark problems, and statistical analysis associated with the corresponding experimental results illustrated that the achieved success is significantly better than a number of state-of-the art methods.


Sign in / Sign up

Export Citation Format

Share Document