scholarly journals One-Step Synthesis of Hierarchical Micro-Mesoporous SiO2/Reduced Graphene Oxide Nanocomposites for Adsorption of Aqueous Cr(VI)

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guiyun Yi ◽  
Baolin Xing ◽  
Huihui Zeng ◽  
Xiaodong Wang ◽  
Chuanxiang Zhang ◽  
...  

A novel micro-mesostructured SiO2/reduced graphene oxide (RGO) nanocomposite was successfully synthesized by means of simple one-step hydrothermal method under acidic conditions using tetraethoxysilane (TEOS) and graphene oxide (GO) as the raw material. The nanocomposites were characterized by TEM, XRD, FT-IR, TG-DSC, and N2 adsorption-desorption. The results showed that GO was partially reduced to RGO without adding any reducing agent and SiO2 nanoparticles (ca. 10 nm) were uniformly anchored on the surface of RGO. The optimized composite contained 75 wt.% SiO2 and possessed hierarchical micro-mesoporous structure with surface area of 676 m2/g. The adsorption performance of synthesized SiO2/RGO samples was investigated by removal efficiency of Cr(VI) ions in wastewater. The Cr(VI) adsorption reached equilibrium in 30 min and 98.8% Cr(VI) adsorption efficiency was achieved at pH = 2 at 35°C. Stability tests showed that SiO2 nanoparticles effectively prevented RGO from the restacking. The mechanisms of composite formation and for Cr(VI) adsorption were suggested.

2017 ◽  
Vol 5 (20) ◽  
pp. 3718-3727 ◽  
Author(s):  
Saibo Chen ◽  
Hao Nan ◽  
Xuan Zhang ◽  
Yuting Yan ◽  
Zhou Zhou ◽  
...  

Bi2WO6 functionalized reduced oxide nanocomposites were prepared by a one-step solvothermal method and their photoelectrochemical performance was greatly improved.


Author(s):  
Alfonso Ferretti ◽  
Sourab Sinha ◽  
Luca Sagresti ◽  
Esteban Araya-Hermosilla ◽  
Mirko Prato ◽  
...  

For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered very suitable starting material, showing enhanced chemical...


RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35004-35011 ◽  
Author(s):  
Suling Yang ◽  
Gang Li ◽  
Chen Qu ◽  
Guifang Wang ◽  
Dan Wang

A new kind of ZnO nanoparticle/N-doped reduced graphene oxide nanocomposite (ZnONPs/N-rGO) was synthesized through a low temperature, low-cost and one step hydrothermal process.


2018 ◽  
Vol 161 ◽  
pp. 699-705 ◽  
Author(s):  
Muthumariappan Akilarasan ◽  
Sakthivel Kogularasu ◽  
Shen-Ming Chen ◽  
Tse-Wei Chen ◽  
Shih-Hao Lin

Author(s):  
Xiaoyun Xu ◽  
Xiaoyi Lv ◽  
Fei Tan ◽  
Yanping Li ◽  
Chao Geng ◽  
...  

Abstract An efficient and sensitive electrochemical sensor for simultaneous detection of heavy metal ions was developed based on furfural/reduced graphene oxide composites (FF/RGO). The preparation of FF/RGO were performed through a one-step high-pressure assisted hydrothermal treatment, which is recommended as a green, convenient, and efficient way for the reduction of graphene oxide and the production of FF/RGO composites. RGO not only serves as the skeleton for furfural loading but also improves the conductivity of the composites in the matrix. FF/RGO with large specific surface area and abundant oxygen-containing functional groups was used to provide more binding sites for the effificient adsorption of heavy-metal ions due to the interaction between hydrophilic groups (-COOH, -OH, and -CHO) and metal cations. The developed sensor showed identifiable electrochemical response toward the heavy metal ions separately and simultaneously, exhibiting superior stability, outstanding sensitivity, selectivity and excellent analytical performance. Impressively, the sensor developed in this experiment has been successfully applied to the simultaneous determination of various heavy metal ions in actual samples, which has definitely exhibited a promising prospect in practical application.


2019 ◽  
Vol 3 (2) ◽  
pp. 396-400 ◽  
Author(s):  
Simon Champet ◽  
Jan van den Berg ◽  
Robert Szczesny ◽  
Agata Godula-Jopek ◽  
Duncan H. Gregory

3-D nanocomposites of (reduced) graphene oxide and ammonia borane can be fabricated in a one-step ice templating process from aqueous suspensions. The nanocomposites release hydrogen at a reduced onset temperature, suppressing the release of diborane, borazine and ammonia.


Sign in / Sign up

Export Citation Format

Share Document