scholarly journals Ranitidine Loaded Biopolymer Floats: Designing, Characterization, and Evaluation

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Abdul Karim ◽  
Muhammad Ashraf Shaheen ◽  
Tahir Mehmood ◽  
Abdul Rauf Raza ◽  
Musadiq Aziz ◽  
...  

The float formulation is a strategy to improve the bioavailability of drugs by gastroretentive drug delivery system (GRDDS). A drug delivery model based on swellable and reswellable low density biopolymers has been designed to evaluate its drug release profile using ranitidine (RNT) as a model drug and formulations have been prepared utilizing 32factorial designs. The drug release (DR) data has been subjected to various kinetic models to investigate the DR mechanism. A reduction in rate has been observed by expanding the amounts of PSG and LSG parts, while an expansion has been noted by increasing the concentration of tragacanth (TG) and citric acid (CA) with an increment in floating time. The stearic acid (SA) has been used to decrease the lag time because a decrease in density of system was observed. The kinetic analysis showed that the optimized formulation (S4F3) followed zero-order kinetics and power law was found to be best fitted due to its minimum lag time and maximum floating ability. The resemblance of observed and predicted values indicated the validity of derived equations for evaluating the effect of independent variables while kinetic study demonstrated that the applied models are feasible for evaluating and developing float for RNT.

2016 ◽  
Vol 23 (4) ◽  
pp. 375-380
Author(s):  
P. Manohar Reddy ◽  
Ravy Lakshmi ◽  
Febin Prabhu Dass ◽  
Swamiappan Sasikumar

AbstractSodium calcium silicate (Na2CaSiO4) is a bioactive silicate with Na2O, CaO and SiO2 as its basic components, which is similar to that of the composition of bioactive glasses. In the present study, pure sodium calcium silicate was synthesized by rapid combustion technique, and the synthesized sample was characterized by powder X-ray diffraction to check the phase purity. The scaffolds were prepared by varying the ratio of sodium calcium silicate and polyvinyl alcohol, and the apatite-formation ability of the scaffolds was examined by soaking them in a simulated body fluid. The results revealed the formation of hydroxyapatite on the surface of the scaffold after 5 days, which is found to be rapid when compared with the bioactivity of the calcium silicates and calcium magnesium silicates. The scaffolds were also loaded with ciprofloxacin as a model drug and analyzed for its drug release profile using UV spectrophotometer. The release profile did not vary with the change in bioceramic-to-biopolymer ratio, and 60% of the drug was released in 10 days, which is within the appreciable range for a targeted drug delivery system. Moreover, the experimental and simulated values of the release kinetics were compared by applying the existing mathematical model.


2019 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Rinku Gonekar ◽  
Mohan Lal Kori

The objective of the present study is to develop colon targeted drug delivery system using dextrin (polysaccharide) as a carrier for Azathioprine.  Microspheres containing azathioprine, dextrin and various excipients were prepared by solvent evaporation technique. The prepared microsphere were evaluated by different methods parameters like particle size,  drug entrapment efficiency, percentage yield, shape and surface morphology  and in vitro drug release study. Drug release profile was evaluated in simulated gastric, intestinal fluid and simulated colonic fluid. Best formulation was decided on the basis drug release profile in simulated gastric, intestinal fluid and simulated colonic fluid. In dextrin based microspheres, dextrin as a carrier was found to be suitable for targeting of Azathioprine for local action in the site of colon. Dextrin microspheres released 95-99% of azathioprine in simulated colonic fluid with 4% human fecal matter solution. The results of in-vitro studies of the azathioprine microspheres indicate that for colon targeting dextrin are suitable carriers to deliver the drug specifically in the colonic region. Dextrin based azathoprine microspheres showed no significance change in particle size and % residual upon storage at 5 ± 3ºC, 25 ± 2ºC/60 ± 5% RH (room temperature) and 40 ± 2ºC/75 ±5%RH humidity for three months. Keywords: azathioprine, microsphere, dextrin, colon specific drug delivery.


Author(s):  
Maher Amer ◽  
Roland K. Chen

Abstract Microneedles (MNs) provide a minimally invasive alternative to intravitreal injections and a promising means to sustainable ocular drug delivery. To optimize the sustained drug release profile and to ease the administration of the MN array to the eye, the number of MNs in an MN array and their layout need to be carefully selected. In this study, the drug release kinetics of MN arrays with varying numbers of MNs (8, 12, and 16) is studied over a four-week period. The MN arrays show a much more uniform drug release profile than the single injections. Only the 16-needle MN array fully released all the amount of loaded drug at the end of the 4-week period. Both 8- and 12-needle arrays showed a steady release rate over the 4-week period, which is the longest sustained release duration that has been reported. Zero-order models are created to predict drug release profiles for the three MN arrays. It is estimated that the MN array with 8 needles can deliver the drug for up to 6 weeks. The models can be used to design MN arrays with a given targeted therapeutic index for sustained drug delivery.


2003 ◽  
Vol 57 (12) ◽  
pp. 611-616 ◽  
Author(s):  
Jin Chung ◽  
Zhang Zhibing

Calcium pectinate beads, a paniculate hydrogel system, is an attractive drug carrier for oral delivery. In this study, a poorly water-soluble model drug indomethacin was incorporated into calcium pectinate beads made of different pectin concentrations, which were produced by an extrusion method. The effect of pectin concentration on bead size, circularity, swelling behavior, and mechanical properties, as well as in vitro drug release profile was investigated. The mechanical properties of calcium pectinate beads were determined by a micromanipulation technique. The drug release profile was measured using a standard British Pharmacopoeia method. It was found that the beads made of higher pectin concentration in general had a less permeable matrix structure and greater mechanical rigidity, although they swelled more after hydration. However, such an effect was not significant when the pectin concentration was increased to above 8%. Micromanipulation measurements showed that there was significant relaxation of the force being imposed on single hydrated beads when they were held, but this phenomenon did not occur on dry beads, which means that the force relaxation was dominated by liquid loss from the beads. The rate of the force relaxation was determined, and has been related to the release rate of the model drug entrapped in the calcium pectinate beads.


2013 ◽  
Vol 1 (04) ◽  
pp. 64-70
Author(s):  
Renu Dinkar ◽  
Govind Mohan ◽  
Kumud Upadhyaya

Pulsatile release profile is characterized by a lag time followed by rapid and complete drug release. Pulsatile drug delivery systems are classified into time-controlled and site-specific delivery systems. The lag time is taken as the time of less than 10% drug release. The objective of present study was to develop a pulsatile compression coated tablet. The system was developed into two steps i.e. firstly core tablet was prepared containing Nifidipine; secondly core tablet was coated with polymer blend of ethyl cellulose (water insoluble polymer) and Eudragit L 100 (Enteric polymer). From the study it was concluded that the formulation having a coating level of 50% w/w of core and weight ratio of ethyl cellulose to Eudragit L 100 (20%) showed lesser release profile as compared to other formulation i.e. 52.83% in 12hrs. As we increase the weight ratio of ethyl cellulose to Eudragit L 100 better entrapment of drug leading to controlled release of drug.


2017 ◽  
Vol 92 (7) ◽  
pp. 1659-1666 ◽  
Author(s):  
Raja S Azarudeen ◽  
Marimuthu Thirumarimurugan ◽  
K Padmadhas Athmiya ◽  
Rengaswamy Monisha ◽  
Venkatasamy Prashanthini

RSC Advances ◽  
2017 ◽  
Vol 7 (44) ◽  
pp. 27637-27644 ◽  
Author(s):  
Ernandes Taveira Tenório-Neto ◽  
Diego de Souza Lima ◽  
Marcos Rogério Guilherme ◽  
Michele Karoline Lima-Tenório ◽  
Débora Botura Scariot ◽  
...  

This work describes the synthesis, characterization and application of a pH- and magnetic-responsive PEG hydrogel (HG) nanocomposite as a platform for drug delivery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Parisa Ghasemiyeh ◽  
Soliman Mohammadi-Samani

Different polymeric materials have been used as drug delivery vehicles for decades. Natural, semisynthetic, and synthetic polymers each have their own specific characteristics and, due to the physicochemical limitations of each polymer, tuning the release rate and targeting the active ingredient to a specific organ or site of action is a complicated task for pharmaceutical scientists. In this regard, polymer blending has been considered as an attractive approach to fabricate novel and unique drug delivery systems with modified physical and/or chemical characteristics. There are three major polymer blending approaches that are used for drug delivery purposes: physical mixtures, core-shell model, and block copolymer model. Each of these types of polymer blends could significantly affect the loading capacities and the kinetics of drug release from the relevant formulations. Drug release from these blended polymers can be tuned through the changes in temperature and pH of the environment, and physiochemical properties of the target organs. Furthermore, the possible molecular interactions among polymers and drug molecules can significantly affect the drug release profile from these blended polymeric micro- and nanocarriers. In this review, first of all, different types of polymers and their various applications in biomedical sciences have been discussed and smart or stimuli responsive polymers are introduced and categorized based on their nature. Then, the purpose of polymer blending in drug delivery systems has been discussed. Different types of polymer blends including physical mixtures, core-shell polymeric carriers, and block copolymers have been summarized with focus on the effect of polymer blending on encapsulated drug release profiles. Finally, the consequence of each blending approach on drug release profile and kinetics of drug release have been mentioned in tabular format.


RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 9082-9089 ◽  
Author(s):  
Yongchao Yao ◽  
He Xu ◽  
Chang Liu ◽  
Yayuan Guan ◽  
Deqiu Xu ◽  
...  

Polyurethane micelles with disulfide bonds positioned mainly either at the hydrophobic PCL junctions (PU-SS-C) or at the connections between the hydrophilic PEG and hydrophobic PCL blocks (PU-SS-I) were developed as a antitumor drug carriers.


Sign in / Sign up

Export Citation Format

Share Document