scholarly journals A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Guohui Li ◽  
Songling Zhang ◽  
Hong Yang

Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed IMFs and residuals are the final prediction results. Six kinds of prediction models are compared, which are DBN prediction model, EMD-DBN prediction model, EEMD-DBN prediction model, CEEMD-DBN prediction model, ESMD-DBN prediction model, and the proposed model in this paper. The same sunspots time series are predicted with six kinds of prediction models. The experimental results show that the proposed model has better prediction accuracy and smaller error.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 950 ◽  
Author(s):  
Jianguo Zhou ◽  
Xuejing Huo ◽  
Xiaolei Xu ◽  
Yushuo Li

Due to the nonlinear and non-stationary characteristics of the carbon price, it is difficult to predict the carbon price accurately. This paper proposes a new novel hybrid model for carbon price prediction. The proposed model consists of an extreme-point symmetric mode decomposition, an extreme learning machine, and a grey wolf optimizer algorithm. Firstly, the extreme-point symmetric mode decomposition is employed to decompose the carbon price into several intrinsic mode functions and one residue. Then, the partial autocorrelation function is utilized to determine the input variables of the intrinsic mode functions, and the residue of the extreme learning machine. In the end, the grey wolf optimizer algorithm is applied to optimize the extreme learning machine, to forecast the carbon price. To illustrate the superiority of the proposed model, the Hubei, Beijing, Shanghai, and Guangdong carbon price series are selected for the predictions. The empirical results confirm that the proposed model is superior to the other benchmark methods. Consequently, the proposed model can be employed as an effective method for carbon price series analysis and forecasting.


2020 ◽  
Vol 20 (04) ◽  
pp. 2050045 ◽  
Author(s):  
Y. B. Yang ◽  
F. Xiong ◽  
Z. L. Wang ◽  
H. Xu

An effective procedure is proposed for extracting bridge frequencies including the higher modes using the vehicle collected data. This is enabled by the use of the contact-point response, rather than the vehicle response, for processing by the extreme-point symmetric mode decomposition (ESMD). The intrinsic mode functions (IMFs) so decomposed are then processed by the FFT to yield the bridge frequencies. A systematic study is conducted to compare the proposed procedure with existing ones, while assessing the effects of various parameters involved. The proposed procedure was verified in the field for a two-span bridge located at the Chongqing University campus. It was confirmed to perform better than the existing ones in extracting bridge frequencies inclusive of the higher modes. The following are the reasons: (1) the ESMD is more efficient than the EMD in that remarkably less IMFs are generated; (2) the modal aliasing problem is largely alleviated, which helps enhancing the visibility of bridge frequencies in general; and (3) the contact-point response adopted is free of the vehicle frequency, which makes the higher frequencies more outstanding and detectable.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xianglei Liu ◽  
Mengzhuo Jiang ◽  
Ziqi Liu ◽  
Hui Wang

Bridge dynamic deflection is an important indicator of structure safety detection. Ground-based microwave interferometry is widely used in bridge dynamic deflection monitoring because it has the advantages of noncontact measurement and high precision. However, due to the influences of various factors, there are many noises in the obtained dynamic deflection of bridges obtained by ground-based microwave interferometry. To reduce the impacts of noise for bridge dynamic deflection obtained with ground-based microwave interferometry, this paper proposes a morphology filter-assisted extreme-point symmetric mode decomposition (MF-ESMD) for the signal denoising of bridge dynamic deflection obtained by ground-based microwave interferometry. First, the original bridge dynamic deflection obtained with ground-based microwave interferometry was decomposed to obtain a series of intrinsic mode functions (IMFs) with the ESMD method. Second, the noise-dominant IMFs were removed according to Spearman’s rho algorithm, and the other decomposed IMFs were reconstructed as a new signal. Finally, the residual noises in the reconstructed signal were further eliminated using the morphological filter method. The results of both the simulated and on-site experiments showed that the proposed MF-ESMD method had a powerful signal denoising ability.


2018 ◽  
Vol 34 (5) ◽  
pp. 769-787 ◽  
Author(s):  
Pingping Xin ◽  
Haihui Zhang ◽  
Jin Hu ◽  
Zhiyong Wang ◽  
Zhen Zhang

Abstract. The existing photosynthetic rate prediction models consider only a single growing season. However, a photosynthetic rate prediction model intended for full growth of crops is needed. Therefore, a photosynthetic rate prediction model based on artificial neural networks (ANN), which establishes the prediction of the entire photosynthetic process, is presented in this article. The proposed model was developed using the multi-factor photosynthetic rate data obtained by experiments on cucumber seedlings and flowering stage. The ANN model was trained with the Levenberg-Marquardt (LM) training algorithm. In contrast to the single-phase photosynthetic rate prediction models, in the proposed model a fusion of parameters of all growing stages was applied, whereat all growing parameters were merged into one six-dimensional input signal (temperature, CO2 concentration, light intensity, relative humidity, chlorophyll content, and growth stage). Verification of model accuracy and performance has shown that merging of growing parameters has obvious advantage. Moreover, the proposed model satisfied the requirement in terms of training error. In addition, the determination correlation between measured and estimated values was 0.9517, thus, good correlation and estimation were achieved. Besides, the test average absolute error was 1.1454, which proves a high accuracy of the proposed model. Therefore, the proposed prediction model can provide the theoretical basis for the facilities light regulation and technical support. Keywords: Artificial neural networks, Cucumber, Full growth period, Photosynthetic rate, Prediction model.


2018 ◽  
Vol 10 (9) ◽  
pp. 3202 ◽  
Author(s):  
Jianguo Zhou ◽  
Xuechao Yu ◽  
Baoling Jin

The nonlinear and non-stationary nature of wind power creates a difficult challenge for the stable operation of the power system when it accesses the grid. Improving the prediction accuracy of short-term wind power is beneficial to the power system dispatching department in formulating a power generation plan, reducing the rotation reserve capacity and improving the safety and reliability of the power grid operation. This paper has constructed a new hybrid model, named the ESMD-PSO-ELM model, which combines Extreme-point symmetric mode decomposition (ESMD), Extreme Learning Machine (ELM) and Particle swarm optimization (PSO). Firstly, the ESMD is applied to decompose wind power into several intrinsic mode functions (IMFs) and one residual(R). Then, the PSO-ELM is applied to predict each IMF and R. Finally, the predicted values of these components are assembled into the final forecast value compared with the original wind power. To verify the predictive performance of the proposed model, this paper selects actual wind power data from 1 April 2016 to 30 April 2016 with a total of 2880 observation values located in Yunnan, China for the experimental sample. The MAPE, NMAE and NRMSE values of the proposed model are 4.76, 2.23 and 2.70, respectively, and these values are lower than those of the other eight models. The empirical study demonstrates that the proposed model is more robust and accurate in forecasting short-term wind power compared with the other eight models.


2021 ◽  
Vol 13 (15) ◽  
pp. 8413
Author(s):  
Jianguo Zhou ◽  
Qiqi Wang

Carbon trading is a significant mechanism created to control carbon emissions, and the increasing enthusiasm for participation in the carbon trading market has forced the emergence of higher-precision carbon price prediction models. Facing the complexity of carbon price time series, this paper proposes a carbon price forecasting hybrid model based on secondary decomposition and an improved extreme learning machine (ELM). First, the complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is utilized to decompose the carbon price several intrinsic modal functions to initially weaken the non-linearity of the original carbon price data. Secondly, the first intrinsic mode function (IMF1) with the strongest volatility is processed by the variational mode decomposition (VMD). Then, the partial autocorrelation function (PACF) is applied to obtain the model input variables for subsequences. Finally, the ELM improved by the bald eagle search (BES) algorithm is utilized to make predictions. In the empirical analysis, five actual datasets from three carbon markets are used to verify the prediction performance of the proposed model. Based on the six evaluation indicators of the predicted results, the proposed model is the best performer among all models, which suggests that CEEMDAN-VMD-BES-ELM is effective and stable in predicting carbon price.


Author(s):  
Ruofan Liao ◽  
Paravee Maneejuk ◽  
Songsak Sriboonchitta

In the past, in many areas, the best prediction models were linear and nonlinear parametric models. In the last decade, in many application areas, deep learning has shown to lead to more accurate predictions than the parametric models. Deep learning-based predictions are reasonably accurate, but not perfect. How can we achieve better accuracy? To achieve this objective, we propose to combine neural networks with parametric model: namely, to train neural networks not on the original data, but on the differences between the actual data and the predictions of the parametric model. On the example of predicting currency exchange rate, we show that this idea indeed leads to more accurate predictions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1328
Author(s):  
Jianguo Zhou ◽  
Shiguo Wang

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.


Sign in / Sign up

Export Citation Format

Share Document