scholarly journals Bifurcation and Chaos Analysis of the Spur Gear Transmission System for One-Way Clutch, Two-Shaft Assembly

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Zhihui Liu ◽  
Hongzhi Yan ◽  
Yuming Cao ◽  
Yuqing Lai

A four-degree-of-freedom nonlinear transverse and torsional vibration model of spur gear transmission system for one-way clutch, two-shaft assembly was developed, in which the one-way clutch was modeled as a piecewise nonlinear spring with discontinuous stiffness, considering the factors such as the time-varying gear mesh stiffness, static transmission error, and nonlinearity backlash. With the help of bifurcation diagrams, time domain response diagrams, phase plane diagrams, and Poincaré maps, the effects of the excitation frequency and the torsional stiffness of one-way clutch on the dynamic behavior of gear transmission system for one-way clutch, two-shaft assembly are investigated in detail by using Runge-Kutta method. Numerical results reveal that the system response involves period-1 motion, multiperiodic motion, bifurcation, and chaotic motion. Large torsional stiffness of one-way clutch can increase the impact and lead to instability in the system. The results can present a useful source of reference for technicians and engineers for dynamic design and vibration control of such system.

Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Lixin Guo

AbstractIn order to study the different backlash, gear damping ratio and random disturbance on dynamic behavior of gear transmission system, stochastic dynamic equations of the three-degree-of-freedom spur gear transmission system are established considering random disturbances of a low-frequency external excitation induced by torque fluctuation, gear damping ratio, gear backlash, excitation frequency and meshing stiffness. Using bifurcation diagram, phase diagram, time course diagram, Poincaré map and power spectrum of the system, the dynamic characteristics of the gear transmission system with different backlash under gear damping ratio changing, and the influence of the random disturbance of gear damping ratio on the bifurcation characteristic of system are analyzed. Numerical simulation shows that the gear transmission system will be from periodic motion with a noisy disturbance to chaotic-like motion by period-doubling bifurcation with decreasing gear damping ratio. In the small damping ratio range, the backlash has great effect on the motion characteristics. Random disturbance has an important effect on the bifurcation characteristics.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Shuai Mo ◽  
Ting Zhang ◽  
Guoguang Jin ◽  
Zhanyong Feng ◽  
Jiabei Gong ◽  
...  

In this study, the dynamic model for the herringbone planetary gear transmission system is established by the lumped parameter method based on the system dynamics and the Lagrange equation, and the impact of the support stiffness and the torsional stiffness on dynamic characteristics is studied. The research results have a guiding significance for the design of the herringbone gear transmission system. In this model, the herringbone gear is treated as a special gear coupled by 2 opposite helical gears, where the stagger angle, comprehensive meshing error, support stiffness, support damping, and load inertia are considered in the analysis of dynamics. Moreover, the dynamic characteristic of the carrier is considered as well. By calculating the meshing force curve of the transmission system, the impact of the stagger angle, supporting stiffness, and the torsional stiffness on meshing force and load sharing coefficient is analyzed. The results show that the stagger angle has an obvious impact on load sharing coefficient while it has little impact on maximum meshing force. And the support stiffness has a more obvious impact on the dynamic characteristics of the system. The recommendary support stiffness of the system is that all of the support stiffness of the sun gear, planetary gear, ring gear, and carrier is 107 N/m. The torsional stiffness has little impact on the dynamic characteristics of transmission system, except the torsional stiffness of planetary gear, and carrier has an obvious impact on load sharing coefficient. The commercial software ADAMS carried out dynamics analysis of the transmission system to verify the necessity validity of the theoretical analysis.


2012 ◽  
Vol 629 ◽  
pp. 506-510 ◽  
Author(s):  
Xiao Sun Wang ◽  
Shi Jing Wu ◽  
Ji Cai Hu ◽  
Jie Chen

The spur gear pair’s nonlinear equation of motion including piece-wise backlash and internal error excitation is derived in this research. The worn tooth effect in time-varying mesh stiffness is introduced to do in-depth investigation of the dynamic traits for gear transmission system with wear fault. The internal excitation frequency is selected as a criterion to calculate the bifurcation diagram and the corresponding Lyapunov exponents. Some auxiliary analyzing meanings such as Poincaré maps, phase trajectory, power spectrum and time history curve are utilized to illustrate the system’s nonlinear behaviors with special parameter settings. Different routes to chaos and abundant nonlinear phenomena have been observed in this nonlinear gear transmission system.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Yangyi Xiao ◽  
Liyang Fu ◽  
Jing Luo ◽  
Wankai Shi ◽  
Minglin Kang

Coatings can significantly improve the load-carrying performance of a gear surface, but how they affect the vibration characteristic of the system is an urgent issue to be solved. Taking into account the nonlinear factors like the variable mesh stiffness, friction, backlash, and transmission error, a six-degree-of-freedom spur gear transmission system with coatings is presented. Meanwhile, the finite element method is applied to acquire the time-varying mesh stiffness of the coated gear pair in the engagement process. With the support of the time-history curve, phase curve, Poincare map, and fast Fourier transform spectrum, the dynamic characteristics and the effects of the coating elastic modulus on vibration behaviors of a gear transmission system are minutely dissected by using a numerical integration approach. Numerical cases illustrate that the dynamic characteristic of a gear transmission system tends toward a one-period state under the given operating condition. They also indicate that, compared with softer coatings, stiffer ones can properly enhance the transmission performance of the coated gear pair. Numerical results are also compared with previous studies, and can establish a theoretical basis for dynamic design and vibration control of the coated gear transmission system.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1788
Author(s):  
Lingling Yao ◽  
Zhuo Meng ◽  
Jianqiu Bu ◽  
Yize Sun

Aiming at the particularity of a multiple-stage closed-loop gear transmission system for 3D circular braiding machine, the model of gear transmission system in radial braiding machine was simplified. The non-linear dynamic equations of a n-elements closed-loop gear transmission system with symmetrical structure including static transmission error, the random disturbance of meshing damping and backlash were considered. For convenience of calculation n = 3, the equations were solved numerically by using Runge-Kutta. The dynamic transmission error(DTE) with different backlash, dynamic meshing forces with and without the random disturbance of meshing damping, the amplitude of dynamic transmission error at n = 1000 r/min and b = 2.65 × 10−5 m, root mean square(RMS) of DTE and the mean value of DTE of the first pair of gears were analyzed. The simulation results show that different backlash and the random disturbance of meshing damping have a great influence on the dynamic displacement error and meshing force of the gear pair, and RMS and the mean value of DTE changes at different rotational speeds. The results will provide a reference for realizing the smoothness of the closed-loop gear transmission system with symmetrical structure for 3D braiding machine and have great practical significance for improving the braiding quality.


Sign in / Sign up

Export Citation Format

Share Document