A new dynamic model of light-weight spur gear transmission system considering the elasticity of the shaft and gear body

2022 ◽  
Vol 170 ◽  
pp. 104689
Author(s):  
Xianlei Guan ◽  
Jinyuan Tang ◽  
Zehua Hu ◽  
Qingshan Wang ◽  
Xiannian Kong
Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Lixin Guo

AbstractIn order to study the different backlash, gear damping ratio and random disturbance on dynamic behavior of gear transmission system, stochastic dynamic equations of the three-degree-of-freedom spur gear transmission system are established considering random disturbances of a low-frequency external excitation induced by torque fluctuation, gear damping ratio, gear backlash, excitation frequency and meshing stiffness. Using bifurcation diagram, phase diagram, time course diagram, Poincaré map and power spectrum of the system, the dynamic characteristics of the gear transmission system with different backlash under gear damping ratio changing, and the influence of the random disturbance of gear damping ratio on the bifurcation characteristic of system are analyzed. Numerical simulation shows that the gear transmission system will be from periodic motion with a noisy disturbance to chaotic-like motion by period-doubling bifurcation with decreasing gear damping ratio. In the small damping ratio range, the backlash has great effect on the motion characteristics. Random disturbance has an important effect on the bifurcation characteristics.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Yangyi Xiao ◽  
Liyang Fu ◽  
Jing Luo ◽  
Wankai Shi ◽  
Minglin Kang

Coatings can significantly improve the load-carrying performance of a gear surface, but how they affect the vibration characteristic of the system is an urgent issue to be solved. Taking into account the nonlinear factors like the variable mesh stiffness, friction, backlash, and transmission error, a six-degree-of-freedom spur gear transmission system with coatings is presented. Meanwhile, the finite element method is applied to acquire the time-varying mesh stiffness of the coated gear pair in the engagement process. With the support of the time-history curve, phase curve, Poincare map, and fast Fourier transform spectrum, the dynamic characteristics and the effects of the coating elastic modulus on vibration behaviors of a gear transmission system are minutely dissected by using a numerical integration approach. Numerical cases illustrate that the dynamic characteristic of a gear transmission system tends toward a one-period state under the given operating condition. They also indicate that, compared with softer coatings, stiffer ones can properly enhance the transmission performance of the coated gear pair. Numerical results are also compared with previous studies, and can establish a theoretical basis for dynamic design and vibration control of the coated gear transmission system.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhibo Geng ◽  
Ke Xiao ◽  
Junyang Li ◽  
Jiaxu Wang

Abstract In this study, a nonlinear dynamic model of a spur gear transmission system with non-uniform wear is proposed to analyze the interaction between surface wear and nonlinear dynamic characteristics. A quasi-static non-uniform wear model is presented, with consideration of the effects of operating time on mesh stiffness and gear backlash. Furthermore, a nonlinear dynamic model with six degrees-of-freedom is established considering surface friction, time-varying gear backlash, time-varying mesh stiffness, and eccentricity, and the Runge–Kutta method applied to solve this model. The bifurcation and chaos in the proposed dynamic model with the change of the operating time and the excitation frequency are investigated by bifurcation and spectrum waterfall diagrams to analyze the bifurcation characteristics and the dimensionless mesh force. It is found that surface wear is generated with a change in operating time and affects the nonlinear dynamic characteristics of the spur gear system. This study provides a better understanding of nonlinear dynamic characteristics of gear transmission systems operating under actual conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Sun ◽  
Honghui Ma ◽  
Xueguan Song ◽  
Lintao Wang ◽  
Xin Ding

Failure of cutterhead driving system (CDS) of tunnel boring machine (TBM) often occurs under shock and vibration conditions. To investigate the dynamic characteristics and reduce system vibration further, an electromechanical coupling model of CDS is established which includes the model of direct torque control (DTC) system for three-phase asynchronous motor and purely torsional dynamic model of multistage gear transmission system. The proposed DTC model can provide driving torque just as the practical inverter motor operates so that the influence of motor operating behavior will not be erroneously estimated. Moreover, nonlinear gear meshing factors, such as time-variant mesh stiffness and transmission error, are involved in the dynamic model. Based on the established nonlinear model of CDS, vibration modes can be classified into three types, that is, rigid motion mode, rotational vibration mode, and planet vibration mode. Moreover, dynamic responses under actual driving torque and idealized equivalent torque are compared, which reveals that the ripple of actual driving torque would aggravate vibration of gear transmission system. Influence index of torque ripple is proposed to show that vibration of system increases with torque ripple. This study provides useful guideline for antivibration design and motor control of CDS in TBM.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qilin Huang ◽  
Yong Wang ◽  
Zhipu Huo ◽  
Yudong Xie

A nonlinear purely rotational dynamic model of a multistage closed-form planetary gear set formed by two simple planetary stages is proposed in this study. The model includes time-varying mesh stiffness, excitation fluctuation and gear backlash nonlinearities. The nonlinear differential equations of motion are solved numerically using variable step-size Runge-Kutta. In order to obtain function expression of optimization objective, the nonlinear differential equations of motion are solved analytically using harmonic balance method (HBM). Based on the analytical solution of dynamic equations, the optimization mathematical model which aims at minimizing the vibration displacement of the low-speed carrier and the total mass of the gear transmission system is established. The optimization toolbox in MATLAB program is adopted to obtain the optimal solution. A case is studied to demonstrate the effectiveness of the dynamic model and the optimization method. The results show that the dynamic properties of the closed-form planetary gear transmission system have been improved and the total mass of the gear set has been decreased significantly.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Junguo Wang ◽  
Bo Lv ◽  
Yongxiang Zhao

Considering the internal and external excitations such as time-varying mesh stiffness (TVMS), backlash, transmission error, torque of the traction motor, and load torque of the wheel/rail, a lumped mass model of the spur gear drive system for a railway locomotive is established. Based on Ma models in the relevant literatures, TVMS is calculated by simplifying a gear tooth as a cantilever beam on the root circle, taking into account the effects of extended tooth contact as well as revised foundation stiffness. The bifurcation diagrams and Lyapunov exponent curves of the model parameters are drawn by the numerical method, and the mechanism of chaos evolution of the gear transmission system is analyzed. According to the Floquet theory, variation curves of the maximum Floquet multiplier with pinion speed and support stiffness ratio are drawn by numerical methods. Combined with the bifurcation diagram of the system, the influences of model parameter on the stability of the system are analyzed, and the evolution laws of periodic motion and bifurcation phenomenon are gained. These research results provide the theoretical evidence of model parameter design of the locomotive transmission system.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Zhihui Liu ◽  
Hongzhi Yan ◽  
Yuming Cao ◽  
Yuqing Lai

A four-degree-of-freedom nonlinear transverse and torsional vibration model of spur gear transmission system for one-way clutch, two-shaft assembly was developed, in which the one-way clutch was modeled as a piecewise nonlinear spring with discontinuous stiffness, considering the factors such as the time-varying gear mesh stiffness, static transmission error, and nonlinearity backlash. With the help of bifurcation diagrams, time domain response diagrams, phase plane diagrams, and Poincaré maps, the effects of the excitation frequency and the torsional stiffness of one-way clutch on the dynamic behavior of gear transmission system for one-way clutch, two-shaft assembly are investigated in detail by using Runge-Kutta method. Numerical results reveal that the system response involves period-1 motion, multiperiodic motion, bifurcation, and chaotic motion. Large torsional stiffness of one-way clutch can increase the impact and lead to instability in the system. The results can present a useful source of reference for technicians and engineers for dynamic design and vibration control of such system.


2021 ◽  
pp. 107754632110132
Author(s):  
Zhibo Geng ◽  
Junyang Li ◽  
Ke Xiao ◽  
Jiaxu Wang

In this study, a new rigid–flexible gear with metal rubber is proposed to reduce the vibration of the gear transmission system. A nonlinear dynamic model with nine degrees of freedom considering bearing clearance, gear backlash, surface friction, and time-varying meshing stiffness is established. The nondimensional dynamic model of the transmission system is obtained and the bifurcation characteristics of the new rigid–flexible gear pair and the rigid gear pair are analyzed when the damping coefficient is, respectively, 0.03 and 0.1. The result shows that the motion state of the rigid–flexible gear pair is more stable. The dynamic responses of the rigid gear pair and the rigid–flexible gear pair are compared as well through numerical analysis and experiment to illustrate the advantage of the rigid–flexible gear pair in vibration reduction. The results can provide reference for vibration reduction of the novel gear transmission.


Sign in / Sign up

Export Citation Format

Share Document