scholarly journals Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Wafaa S. Sayed ◽  
Moheb M. R. Henein ◽  
Salwa K. Abd-El-Hafiz ◽  
Ahmed G. Radwan

This paper proposes a novel generalized switched synchronization scheme amongnfractional-order chaotic systems with various operating modes. Digital dynamic switches and dynamic scaling factors are employed, which offer many new capabilities. Dynamic switches determine the role of each system as a master or a slave. A system can either have a fixed role throughout the simulation time (static switching) or switch its role one or more times (dynamic switching). Dynamic scaling factors are used for each state variable of the master system. Such scaling factors control whether the master is a single system or a combination of several systems. In addition, these factors determine the generalized relation between the original systems from which the master system is built as well as the slave system(s). Moreover, they can be utilized to achieve different kinds of generalized synchronization relations for the purpose of generating new attractor diagrams. The paper presents a mathematical formulation and analysis of the proposed synchronization scheme. Furthermore, many numerical simulations are provided to demonstrate the successful generalized switched synchronization of several fractional-order chaotic systems. The proposed scheme provides various functions suitable for applications such as different master-slave communication models and secure communication systems.

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dongming Chen ◽  
Xinyu Huang ◽  
Tao Ren

Aiming at the abrupt faults of the chaotic system, an adaptive observer is proposed to trace the states of the master system. The sufficient conditions for synchronization of such chaotic systems are also derived. Then the feasibility and effectiveness of the proposed method are illustrated via numerical simulations of chaotic Chen system. Finally, the proposed synchronization schemes are applied to secure communication system successfully. The experimental results demonstrate that the employed observer can manage real-time fault diagnosis and parameter identification as well as states tracing of the master system, and so the synchronization of master system and slave system is achieved.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 407
Author(s):  
Zhang ◽  
Feng ◽  
Yang

This paper investigates the problem of complex modified projective synchronization (CMPS) of fractional-order complex-variable chaotic systems (FOCCS) with unknown complex parameters. By a complex-variable inequality and a stability theory for fractional-order nonlinear systems, a new scheme is presented for constructing CMPS of FOCCS with unknown complex parameters. The proposed scheme not only provides a new method to analyze fractional-order complex-valued systems but also significantly reduces the complexity of computation and analysis. Theoretical proof and simulation results substantiate the effectiveness of the presented synchronization scheme.


1993 ◽  
Vol 03 (06) ◽  
pp. 1619-1627 ◽  
Author(s):  
CHAI WAH WU ◽  
LEON O. CHUA

In this paper, we provide a scheme for synthesizing synchronized circuits and systems. Synchronization of the drive and response system is proved trivially without the need for computing numerically the conditional Lyapunov exponents. We give a definition of the driving and response system having the same functional form, which is more general than the concept of homogeneous driving by Pecora & Carroll [1991]. Finally, we show how synchronization coupled with chaos can be used to implement secure communication systems. This is illustrated with examples of secure communication systems which are inherently error-free in contrast to the signal-masking schemes proposed in Cuomo & Oppenheim [1993a,b] and Kocarev et al. [1992].


2013 ◽  
Vol 23 (02) ◽  
pp. 1350030 ◽  
Author(s):  
SHIU-PING WANG ◽  
SENG-KIN LAO ◽  
HSIEN-KENG CHEN ◽  
JUHN-HORNG CHEN ◽  
SHIH-YAO CHEN

In recent years, there has been expanding research on the applications of fractional calculus to the areas of signal processing, modeling and controls. Analog circuit implementation of chaotic systems is used in studying nonlinear dynamical phenomena, which is also applied in realizing the controller development. In this paper, chain fractance and tree fractance circuits are constructed to realize the fractional-order Chen–Lee system. The results are in good agreement with those obtained from numerical simulation. This study shows that not only is this system related to gyro motion but can also be applied to electronic circuits for secure communication.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350195 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve the generalized synchronization between two different fractional-order chaotic systems. Based on the stability theory of fractional-order systems and the pole placement technique, a controller is designed and theoretical proof is given. Two groups of examples are shown to verify the effectiveness of the proposed scheme, the first one is to realize the generalized synchronization between the fractional-order Chen system and the fractional-order Rössler system, the second one is between the fractional-order Lü system and the fractional-order hyperchaotic Lorenz system. The corresponding numerical simulations verify the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document